Lidar Toolbox™

User's Guide

7

MATLAB

R2022a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Lidar Toolbox™ User's Guide
© COPYRIGHT 2020-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

September 2020 Online only New for Version 1.0 (R2020b)
March 2021 Online only Revised for Version 1.1 (R2021a)
September 2021 Online only Revised for Version 2.0 (R2021b)

March 2022 Online only Revised for Version 2.1 (R2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Lidar Toolbox Featured Examples

1]

Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal
Engine Simulation 1-2

Curb Detection in 3-D Lidar PointCloud 1-14

Code Generation for Lidar Object Detection Using SqueezeSegV?2

Network 1-34
Lidar Object Detection Using Complex-YOLO v4 Network 1-40
Automate Ground Truth Labeling for Lidar Point Cloud Semantic

Segmentation Using Lidar Labeler 1-55
Create, Process, and Export Digital Surface Model from Lidar Data . . . 1-65
Multi-Lidar Calibration 1-73

Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar

Data 1-86
Code Generation For Aerial Lidar Semantic Segmentation Using PointNet

++DeepLlearning 1-95
Build Map and Localize Using Segment Matching 1-101
Lidar and Camera Calibration 1-119

Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning

Network 1-128
Detect, Classify, and Track Vehicles Using Lidar 1-139
Feature-Based Map Building from LidarData 1-154
Detect Vehicles in Lidar Using Image Labels 1-163
Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep

Learning Network 1-173
Code Generation for Lidar Point Cloud Segmentation Network 1-182

Lidar 3-D Object Detection Using PointPillars Deep Learning 1-189

iii

iv

Contents

Aerial Lidar SLAM Using FPFH Descriptors 1-200

Collision Warning Using 2-D Lidar 1-214
Track Vehicles Using Lidar: From Point Cloud to Track List 1-224
Build Map from 2-D Lidar Scans Using SLAM 1-242
Terrain Classification for Aerial LidarData 1-249

Data Augmentations for Lidar Object Detection Using Deep Learning 1-255

Unorganized to Organized Conversion of Point Clouds Using Spherical
Projection 1-265

Lane Detection in 3-D Lidar PointCloud 1-272

Automate Ground Truth Labeling For Vehicle Detection Using PointPillars

2|

.. 1-289
Track-Level Fusion of Radar and LidarData 1-299
Code Generation For Lidar Object Detection Using PointPillars Deep

Learning e 1-319
Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning
.. 1-324
Lidar Labeling
Get Started with the Lidar Labeler 2-2
Load LidarDatatoLabel 2-2
Create Labels and Attributes 2-4
Ground Segmentation 2-6
Label Point Cloud Using Automation, 2-7
View and Adjustthe Labels 2-7
Exportthe Labels 2-10
Keyboard Shortcuts and Mouse Actions for Lidar Labeler 2-12
Label Definitions 2-12
Frame Navigation and Time Interval Settings 2-12
Labeling Window i e 2-12
Cuboid Resizingand Moving, 2-13
Zooming, Panning, and Rotating 2-14
ADD SESSIONS . .ot e 2-14
Use Custom Point Cloud Source Reader for Labeling 2-15
Create Custom Reader Function 2-15
Import Data Source into Lidar Labeler App 2-15

3|

4

Create Automation Algorithm for Labeling 2-17
Create New Algorithm 2-17
Import Existing Algorithm 2-18
Custom Algorithm Execution 2-18

Temporal Automation Algorithms 2-21
Create Temporal Automation Algorithm 2-21
Run Temporal Automation Algorithm 2-21

Lidar Viewer Tutorial

Create Custom Preprocessing Workflow with Lidar Viewer 3-2
Read Point Cloud Data 3-2
Load Point Cloud Data into Lidar Viewer 3-2
Create Custom Preprocessing Algorithm 3-3
Combine Multiple Preprocessing Algorithms 3-9
Export Custom Preprocessing Workflow to MATLAB Function 3-10
Export Point Cloud Data from Lidar Viewer 3-11

Concept Pages

Introductionto Lidar 4-2
What is Lidar? e 4-2
WhatisaPoint Cloud? 4-2
Typesof Lidar 4-3
Advantages of Lidar Technology 4-4
Lidar Processing OVEIVIEW in e 4-5
Applications of Lidar Technology 4-5

Coordinate Systems in Lidar Toolbox 4-7
World Coordinate System 4-7
Sensor Coordinate System 4-7
Spatial Coordinate System i 4-8
Pattern Coordinate System i 4-8

What Is Lidar-Camera Calibration? 4-10
Extrinsic Calibration of Lidarand Camera 4-10

Calibration Guidelines 4-14
Checkerboard Guidelines 4-14
Guidelines for CapturingData 4-15

What are Organized and Unorganized Point Clouds? 4-17
Introduction e 4-17
Unorganized to Organized Conversionc.......... 4-17

Parameter Tuning for Ground Segmentation 4-20

vi

Contents

Get Started with Lidar Camera Calibrator 4-21

Load Data o 4-21
Feature Detection i 4-22
Calibration 4-27
Export Results 4-28
Keyboard Shortcuts and Mouse Actions 4-28
Limitationso i 4-30

Get Started with Lidar Viewer 4-32
Load Data oo 4-32
Data Visualization e 4-34
Color Controlst e 4-37
Camera View Optionst e 4-39
EditPoint Cloud i 4-43
Custom Preprocessing Algorithms 4-46
Export Point Cloud i 4-47
Measure Point Cloud 4-47
Getting Started with PointPillars 4-49
PointPillars Network e 4-49
Create PointPillars Network 4-50
Transfer Learningttt e 4-50
Train PointPillars Object Detector and Perform Object Detection 4-50
Code Generation i e 4-50
Getting Started with PointNet++ 4-52
PointNet++ Network 4-52
Create PointNet++ Network 4-53
Train PointNet++ Network 4-53
Code Generation e 4-53
Tutorials

S|

Generate Lidar Point Cloud Data for Driving Scenario with Multiple
ACOrS 5-2

Read Point Cloud Data from LAZ File 5-6

Estimate Transformation Between Two Point Clouds Using Features 5-7

Match and Visualize Corresponding Features in Point Clouds 5-10
Read Lidar and Camera Data from Rosbag File 5-13
Read, Process, and Write Lidar Point Cloud Data 5-15
Extract Ground Points and Non-Ground Points From Lidar Data 5-20

Lidar Toolbox Featured Examples

* “Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation”
on page 1-2

* “Curb Detection in 3-D Lidar Point Cloud” on page 1-14
* “Code Generation for Lidar Object Detection Using SqueezeSegV2 Network” on page 1-34
» “Lidar Object Detection Using Complex-YOLO v4 Network” on page 1-40

* “Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar
Labeler” on page 1-55

» “Create, Process, and Export Digital Surface Model from Lidar Data” on page 1-65
* “Multi-Lidar Calibration ” on page 1-73
» “Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data” on page 1-86

* “Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
on page 1-95

* “Build Map and Localize Using Segment Matching” on page 1-101
* “Lidar and Camera Calibration” on page 1-119

* “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network”
on page 1-128

» “Detect, Classify, and Track Vehicles Using Lidar” on page 1-139
* “Feature-Based Map Building from Lidar Data” on page 1-154
* “Detect Vehicles in Lidar Using Image Labels” on page 1-163

* “Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network”
on page 1-173

* “Code Generation for Lidar Point Cloud Segmentation Network” on page 1-182

+ “Lidar 3-D Object Detection Using PointPillars Deep Learning” on page 1-189

» “Aerial Lidar SLAM Using FPFH Descriptors” on page 1-200

* “Collision Warning Using 2-D Lidar” on page 1-214

* “Track Vehicles Using Lidar: From Point Cloud to Track List” on page 1-224

* “Build Map from 2-D Lidar Scans Using SLAM” on page 1-242

* “Terrain Classification for Aerial Lidar Data” on page 1-249

» “Data Augmentations for Lidar Object Detection Using Deep Learning” on page 1-255

* “Unorganized to Organized Conversion of Point Clouds Using Spherical Projection” on page 1-265
* “Lane Detection in 3-D Lidar Point Cloud” on page 1-272

* “ Automate Ground Truth Labeling For Vehicle Detection Using PointPillars” on page 1-289

* “Track-Level Fusion of Radar and Lidar Data” on page 1-299

* “Code Generation For Lidar Object Detection Using PointPillars Deep Learning” on page 1-319
* “Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning” on page 1-324

1 Lidar Toolbox Featured Examples

Build a Map with Lidar Odometry and Mapping (LOAM) Using
Unreal Engine Simulation

1-2

This example shows how to build a map with the lidar odometry and mapping (LOAM) [1] on page 1-
0 algorithm by using synthetic lidar data from the Unreal Engine® simulation environment. In this
example, you learn how to:

* Record and visualize synthetic lidar sensor data from a 3D simulation environment using the
Unreal Engine.

* Use the LOAM algorithm to register the recorded point clouds and build a map.
Set Up Scenario in Simulation Environment

Load the prebuilt Large Parking Lot (Automated Driving Toolbox) scene and a preselected reference
trajectory. For information on how to generate a reference trajectory interactively by selecting a
sequence of waypoints, see the “Select Waypoints for Unreal Engine Simulation” (Automated Driving
Toolbox) example.

% Load reference path
data = load("parkingLotReferenceData.mat");

% Set reference trajectory of the ego vehicle

refPosesX = data.refPosesX;
refPosesY = data.refPosesY;
refPosesT = data.refPosesT;

% Set poses of the parked vehicles
parkedPoses = data.parkedPoses;

% Display the reference trajectory and the parked vehicle locations

sceneName = "LargeParkingLot";

hScene = figure(Name="Large Parking Lot",NumberTitle="off");
helperShowSceneImage(sceneName);

hold on
plot(refPosesX(:,2),refPosesY(:,2),LineWidth=2,DisplayName="Reference Path");
scatter(parkedPoses(:,1),parkedPoses(:,2),[],"filled",DisplayName="Parked Vehicles");
x1im([-60 40])

ylim([10 60])

hScene.Position = [100 100 1000 500]; % Resize figure

title("Large Parking Lot")

legend

Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

L; Parking Lot
60 arge Parking Lo

Reference

Parked Vehicles
. o

-60 -50 -40 -30 -20 -10 0 10 20 30 40

Vo fead

Open the Simulink® model, and add additional vehicles to the scene using the
helperAddParkedVehicle function.

modelName = 'GeneratelLidarDataOfParkingLot';
open_system(modelName)
snapnow

helperAddParkedVehicles (modelName, parkedPoses)

Record and Visualize Data

Use the Simulation 3D Vehicle with Ground Following (Automated Driving Toolbox) block to simulate
a vehicle moving along the specified reference trajectory. Use the Simulation 3D Lidar (Automated
Driving Toolbox) block to mount a lidar on the center of the roof of the vehicle, and record the sensor
data.

close(hScene)
if ~ispc
error("Unreal Engine Simulation is supported only on Microsoft" + char(174) + " Windows" + cl

end

% Run simulation
simOut = sim(modelName);

close _system(modelName,0)

Use the helperGetPointClouds on page 1-0 function and the helperGetLidarGroundTruth
on page 1-0 function to extract the lidar data and the ground truth poses.

ptCloudArr = helperGetPointClouds(simOut);
groundTruthPosesLidar = helperGetLidarGroundTruth(simOut);

1-3

1 Lidar Toolbox Featured Examples

1-4

Detect Edge Points and Surface Points

The LOAM algorithm uses edge points and surface points for registration and mapping. The
detectLOAMFeatures function outputs a LOAMPoints object, which stores the selected edge points
and surface points. It includes the label of each point, which can be sharp-edge, less-sharp-edge,
planar-surface, or less-planar-surface. Use the pcregisterloam function to register two organized
point clouds.

ptCloud = ptCloudArr(1);

nextPtCloud = ptCloudArr(2);

gridStep = 1;

tform = pcregisterloam(ptCloud, nextPtCloud,gridStep);
disp(tform)

rigid3d with properties:

Rotation: [3x3 single]
Translation: [-0.2341 0.0101 0.0041]

Alternatively, for more control over the trade-off between accuracy and speed, you can first detect the
LOAM feature points, and then perform LOAM registration using pcregisterloam. These steps are
recommended before LOAM registration:

1 Detect LOAM feature points using the detectLOAMFeatures function.

2 Downsample the less planar surface points using the downsamplelLessPlanar object function.
This step helps speed up registration using the pcregisterloam function.

Because the detection algorithm relies on the neighbors of each point to classify edge points and
surface points, as well as to identify unreliable points on the boundaries of occluded regions,
preprocessing steps like downsampling, denoising and ground removal are not recommended before
feature point detection. To remove noise from data farther from the sensor, and to speed up
registration, filter the point cloud by range. The helperRangeFilter on page 1-0 function selects
a cylindrical neighborhood around the sensor, given a specified cylinder radius, and excludes data
that is too close to the sensor and might include part of the vehicle.

egoRadius = 2;

cylinderRadius = 30;

ptCloud = helperRangeFilter(ptCloud,egoRadius,cylinderRadius);
nextPtCloud = helperRangeFilter(nextPtCloud, egoRadius,cylinderRadius);

figure

hold on

title("Cylindrical Neighborhood")
pcshow(ptCloud)

view(2)

Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

Cylindrical Neighborhood

257

Next, detect LOAM feature points using the detectLOAMFeatures function. Tuning this function
requires empirical analysis. The detectLOAMFeatures name-value arguments provide a trade-off
between registration accuracy and speed. To improve the accuracy of the registration, you must
minimize the root mean squared error of the Euclidean distance between the aligned points. Track
and minimize the root mean squared error output rmse of the pcregisterloam function as you
increase the value of the NumRegionsPerLaser, MaxSharpEdgePoints,
MaxLessSharpEdgePoints, and MaxPlanarSurfacePoints arguments of
detectLOAMFeatures.

maxPlanarSurfacePoints = 8;
points = detectLOAMFeatures(ptCloud,MaxPlanarSurfacePoints=maxPlanarSurfacePoints);
nextPoints = detectLOAMFeatures(nextPtCloud,MaxPlanarSurfacePoints=maxPlanarSurfacePoints);

figure

hold on

title("LOAM Points")
show(points,MarkerSize=12)

1-5

1 Lidar Toolbox Featured Examples

1-6

LOAM Points

[~,rmse] = pcregisterloam(points,nextPoints);
disp(rmse)

0.2951

detectLOAMFeatures first identifies sharp edge points, less sharp edge points, and planar surface
points. All remaining points that are not considered unreliable points, and have a curvature value
below the threshold are classified as less planar surface points. Downsampling the less planar surface
points can speed up registration when using pcregisterloam.

points = downsampleLessPlanar(points,gridStep);

figure

hold on

title('LOAM Points After Downsampling the Less Planar Surface Points')
show(points, 'MarkerSize',12)

Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

LOAM Points After Downsampling the Less Planar Surface Points

Build Map Using Lidar Odometry

The LOAM algorithm consists of two main components that are integrated to compute an accurate
transformation: Lidar Odometry and Lidar Mapping. Use the pcregisterloam function with the
one-to-one matching method to get the estimated transformation using the Lidar Odometry
algorithm. The one-to-one matching method matches each point to its nearest neighbor, matching
edge points to edge points and surface points to surface points. Use these matches to compute an
estimate of the transformation. Use pcregisterloam with the one-to-one matching method to
incrementally build a map of the parking lot. Use a pcviewset object to manage the data.

Initialize the poses and the point cloud view set.
absPose = groundTruthPosesLidar(1);
relPose = rigid3d;

vSetOdometry = pcviewset;

Add the first view to the view set.

viewld = 1;
vSetOdometry = addView(vSetOdometry,viewld,absPose);

1-7

1 Lidar oolbox Featured Examples

1-8

Register the point clouds incrementally and visualize the vehicle position in the parking lot scene.

% Display the parking lot scene with the reference trajectory
hScene = figure(Name="Large Parking Lot",NumberTitle="off");
helperShowSceneImage(sceneName) ;

hold on

plot(refPosesX(:,2),refPosesY(:,2),LineWidth=2)

x1im([-60 40])

ylim([10 60])

hScene.Position = [100 100 1000 500];

numSkip = 5;

for k = (numSkip+1)+1:numSkip:numel(ptCloudArr)
prevPoints = points;
viewId = viewId + 1;
ptCloud = ptCloudArr(k);

% Apply a range filter to the point cloud
ptCloud = helperRangeFilter(ptCloud, egoRadius,cylinderRadius);

% Detect LOAM points and downsample the less planar surface points
points detectLOAMFeatures(ptCloud,MaxPlanarSurfacePoints=maxPlanarSurfacePoints);
points = downsamplelLessPlanar(points,gridStep);

% Register the points using the previous relative pose as an initial
% transformation
relPose = pcregisterloam(points,prevPoints,InitialTransform=relPose);

% Update the absolute pose and store it in the view set
absPose = rigid3d(relPose.T * absPose.T);
vSetOdometry = addView(vSetOdometry,viewld,absPose);

% Visualize the absolute pose in the parking lot scene
plot(absPose.Translation(1l),absPose.Translation(2),Color="r",Marker=".",MarkerSize=8);
xlim([-60 401])
ylim([10 60])
title("Build a Map Using Lidar Odometry")
legend(["Ground Truth","Estimated Position"])
pause(0.001)
view(2)
end

Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

Y (m)

60
55 —
50
45 | o
40

35

30

25

20

15

10

-60

Build a Map Using Lidar Odometry

Ground Trut
Estimated Paosition

-50 -40 -30 -20 -10 0 10 20 30 40

Improve the Accuracy of the Map with Lidar Mapping

Lidar Mapping uses more points for registration and relies on a local map to find more accurate
poses. Use the pcregisterloam function with the one-to-many matching method to get the
estimated transformation using the Lidar Mapping registration algorithm. The one-to-many matching
method matches each point to multiple nearest neighbors. Then, it uses these matches to compute
the transformation. You can use the one-to-many matching method of Lidar Mapping to refine the
rough estimate from the one-to-one matching method of Lidar Odometry. Lidar Mapping registers
against a local map that contains points from multiple laser scans. Using this matching method, there
are more points available to compute the transformation using the one-to-many matching method.
Use the helperLidarMap object to manage the points in the map and select a local map for
registration using the selectLocalMap object function of helperLidarMap.

Initialize the poses.

absPose = groundTruthPosesLidar(1l);
relPose = rigid3d;
vSetMapping = pcviewset;

Detect LOAM points in the first point cloud.

ptCloud = ptCloudArr(1);

ptCloud = helperRangeFilter(ptCloud, egoRadius, cylinderRadius);

points = detectLOAMFeatures(ptCloud, 'MaxPlanarSurfacePoints',maxPlanarSurfacePoints);
points = downsamplelLessPlanar(points,gridStep);

Add the first view to the view set.

viewId = 1;
vSetMapping = addView(vSetMapping,viewld,absPose);

Create a map using the helperLidarMap class, and add points to the map using the addPoints
object function of helperLidarMap.

1-9

1 Lidar Toolbox Featured Examples

lidarMap
lidarMap

helperLidarMap;
addPoints(lidarMap, points,absPose);

Select a local map using the selectLocalMap object function of helperLidarMap.

sz = [50 50 100];
lidarMap = selectLocalMap(lidarMap,absPose.Translation,sz);

Use pcregisterloam with the one-to-one matching method to get an estimated pose using Lidar
Odometry. Then, use pcregisterloam with the points in the local map and the one-to-many
matching method to refine this pose. Get the points in the local map for registration using the
getLocalMap object function of helperLidarMap. The getLocalMap object function returns the
points inside the local map selected using selectLocalMap. Downsample the points in the map
using the downsamplePoints object function of helperLidarMap to remove duplicate points from
the map.

% Display the parking lot scene with the reference trajectory
hScene = figure(Name="Large Parking Lot",NumberTitle="off");
helperShowSceneImage(sceneName);

hold on

plot(refPosesX(:,2),refPosesY(:,2),LineWidth=2)

xlim([-60 40])

ylim([10 60])

hScene.Position = [100 100 1000 500];

numSkip = 5;
for k = (numSkip+1)+1:numSkip:numel(ptCloudArr)
prevPtCloud = ptCloud;
prevPoints = points;
viewld = viewId + 1;
ptCloud ptCloudArr(k);

% Apply a range filter to the point cloud
ptCloud helperRangeFilter(ptCloud,egoRadius, cylinderRadius);

% Detect LOAM points and downsample the less planar surface points
points = detectLOAMFeatures(ptCloud,MaxPlanarSurfacePoints=maxPlanarSurfacePoints);
points downsampleLessPlanar(points,gridStep);

Register the points using the previous relative pose as an initial
transformation
relPose = pcregisterloam(points,prevPoints,MatchingMethod="one-to-one",InitialTransform=relP

%
%

% Update the absolute pose
absPose = rigid3d(relPose.T * absPose.T);

% Get the LOAM points in the local map using the estimated absolute
% pose
mapPoints = getLocalMap(lidarMap,absPose);

getLocalMap returns the mapPoints aligned to the last points

detected. Find the refinement transformation that improves the

alignment of the points

poseRefinement = pcregisterloam(points,mapPoints,MatchingMethod="one-to-many",InitialTransfo

o® o° o°

% Refine the absolute pose using the pose refinement transformation
absPose = rigid3d(poseRefinement.T * absPose.T);

1-10

Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

% Store the refined absolute pose in the view set
vSetMapping = addView(vSetMapping,viewld,absPose);

% Add the new points to the map
lidarMap = addPoints(lidarMap,points,absPose);

% Downsample the map to remove duplicate points
lidarMap = downsamplePoints(lidarMap,0.5);

% Select a new local map using the new absolute pose
lidarMap = selectLocalMap(lidarMap,absPose.Translation,sz);

% Visualize the absolute pose in the parking lot scene
plot(absPose.Translation(1l),absPose.Translation(2),Color="r",Marker=".",MarkerSize=8)
xlim([-60 40])
ylim([10 601])
title("Build a Map Using Lidar Mapping")
legend(["Ground Truth","Estimated Position"])
pause(0.001)
view(2)
end

Ground Truth
——— Estimated Position

-60 -50 -40 -30 -20 -10 0 10 20 30 40

VL)

Compare Results

Visualize the estimated trajectories and compare them to the ground truth. Notice that combining
Lidar Odometry and Lidar Mapping results in a more accurate map.

figure

plot(refPosesX(:,2),refPosesY(:,2),LineWidth=2,DisplayName="Ground Truth")
hold on

% Get the positions estimated with Lidar Odometry
odometryPositions = vertcat(vSetOdometry.Views.AbsolutePose.Translation);

1-11

1 Lidar Toolbox Featured Examples

plot(odometryPositions(:,1),odometryPositions(:,2),LineWidth=2,DisplayName="0dometry")

% Get the positions estimated with Lidar Odometry and Mapping

mappingPositions = vertcat(vSetMapping.Views.AbsolutePose.Translation);
plot(mappingPositions(:,1),mappingPositions(:,2),LineWidth=2,DisplayName="0dometry and Mapping")

legend
title("Compare Trajectories")

Compare Trajectories

50 . .

Ground Truth
Odometry

Odometry and Mapping
45 — -

40

35

30

25 I I I I
-40 -30 -20 -10 0

30

References

[1] Zhang, Ji, and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-Time.” In Robotics:
Science and Systems X. Robotics: Science and Systems Foundation, 2014. https://doi.org/10.15607/
RSS.2014.X.007.

Supporting Functions

helperGetPointClouds extracts an array of pointCloud objects that contain lidar sensor data.

function ptCloudArr = helperGetPointClouds(simQOut)

1-12

https://doi.org/10.15607/RSS.2014.X.007
https://doi.org/10.15607/RSS.2014.X.007

Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

% Extract signal
ptCloudData = simOut.ptCloudData.signals.values;

% Create a pointCloud array
ptCloudArr = pointCloud(ptCloudData(:,:,:,2)); % Ignore first frame
for n = 3:size(ptCloudData,4)

ptCloudArr(end+1) = pointCloud(ptCloudData(:,:,:,n)); S%#ok<AGROW>
end

end

helperGetLidarGroundTruth extracts an array of rigid3d objects that contain the ground truth
location and orientation.

function gTruth = helperGetLidarGroundTruth(simOut)

numFrames = size(simOut.lidarLocation.time,1);
gTruth = repmat(rigid3d,numFrames-1,1);

for i = 2:numFrames
gTruth(i-1).Translation = squeeze(simOut.lidarLocation.signals.values(:,:,1));
% Ignore the roll and the pitch rotations since the ground is flat
yaw = double(simOut.lidarOrientation.signals.values(:,3,1));
gTruth(i-1).Rotation = [cos(yaw) sin(yaw) O;
-sin(yaw) cos(yaw) 0;
0 0 1];
end
end

helperRangeFilter filters the point cloud by range.
function ptCloud = helperRangeFilter(ptCloud, egoRadius,cylinderRadius)

% Compute the distance between each point and the origin
dists = hypot(ptCloud.Location(:,:,1),ptCloud.Location(:,:,2));

% Select the points inside the cylinder radius and outside the ego radius
cylinderIdx = dists <= cylinderRadius & dists >= egoRadius;
ptCloud = select(ptCloud,cylinderIdx,OQutputSize="full");

end

1-13

1 Lidar Toolbox Featured Examples

Curb Detection in 3-D Lidar Point Cloud

1-14

This example shows how to detect curbs in lidar point clouds. A curb is a line of stone or concrete,
that connects the roadway to the sidewalk. Curbs act as delimiters for the drivable area of the road.
In the absence of GPS signals, detecting the curb position is important for path planning and safe
navigation in autonomous driving applications.

This example uses a subset of the PandaSet data set from Hesai and Scale. The PandaSet contains
lidar point cloud scans of various city scenes captured using the Pandar64 sensor.

Introduction

Curb detection in lidar point cloud involves the detecting the left and right curbs of a road with
respect to the ego vehicle. The lidar sensor is mounted on the top of the vehicle.

Use these steps to detect curbs in the point cloud data captured by the lidar sensor:

1 Extract a region of interest(ROI)

2 (lassity on-road and off-road points

3 Identify the road shape using the off-road points

4 Detect candidate curb points using the on-road points

Download Lidar Data Set

The size of the data set is 5.2 GB, and it contains 2560 preprocessed organized point clouds. Out of
these, this example uses a subset of 27 point clouds. Each point cloud is specified as a 64-by-1856-
by-3 array. The ground truth data contains the semantic segmentation labels for 13 classes. The point
clouds are stored in PCD format, and the ground truth data is stored in PNG format.

Download the PandaSet data set using the helperDownloadPandasetData helper function, defined
at the end of this example.

% Set random seed to generate reproducible results
rng("default");
[ptCloudData, labelsData] = helperDownloadPandasetData;

Select the first frame of the data set for further processing. Visualize the point cloud.

ptCloud = ptCloudData{l};
labels = labelsData{1l};

% Visualize the input point cloud with corresponding ground truth labels
figure

pcshow(ptCloud.Location, labels)

view(2)

title("Input Lidar Point Cloud")

https://scale.com/open-datasets/pandaset

Curb Detection in 3-D Lidar Point Cloud

Input Lidar Point Cloud

Wamning: This callback workflow is not currently supported
See Callback Definition in the MATLAE documentation

-150 100 -5 50 100 150

Preprocess Data

As a preprocessing step for detecting curb points, first extract a region of interest from the point
cloud and classify the points within it as on-road or off-road points.

Based on the installed position of the lidar sensor, the point cloud data is sparse beyond a certain
distance. To ensure the point cloud you extract is dense enough for further processing, specify an ROI
within a limited distance of the sensor.

% Define ROI in meters
xLim [-35 20];
yLim = [-25 25];

roildx = ptCloud.Location(:,:,1) >= xLim(1l) & ...
ptCloud.Location(:,:,1) <= xLim(2) & ...
ptCloud.Location(:,:,2) >= yLim(1) & ...
ptCloud.Location(:,:,2) <= yLim(2);

Classify the point cloud into on-road and off-road points using these labels:

* 1 — Unlabeled

* 2 — Vegetation

* 3 — Ground

* 4 —Road

* 5 — Road Marking
* 6 —Side Walk

e 7—Car

1-15

1 Lidar Toolbox Featured Examples

* 8 — Truck

* 9 — Other Vehicle
* 10 — Pedestrian

* 11 — Road Barrier
* 12 — Signs

¢ 13 — Buildings

labels(~roildx) = nan;
% The on-road points consist of ground, road and sidewalk
onRoadLabelsIdx = (labels == 3 | labels == 4 | labels == 6);

% The off-road points consist of buildings and other objects
offRoadLabelsIdx = (labels == 2 | labels == 11 |
labels == 12 | labels == 13);

% Visualize the point cloud, along with on-road and off-road points.
figure

subplot(1,3,1)

pcshow(select(ptCloud, roildx))

view(2)

title("Cropped Input Point Cloud")

subplot(1,3,2)
pcshow(select(ptCloud,onRoadLabelsIdx))
view(2)

title("On-road Point Cloud")

subplot(1,3,3)
pcshow(select(ptCloud,offRoadLabelsIdx))
view(2)

title("0ff-road Point Cloud")

1-16

Curb Detection in 3-D Lidar Point Cloud

Wamning: This callback workflow is not currently supported
See Callback Definition in the MATLAE documentation

Cropped Input Point Cloud On-road Point Cloud Off-road Point Cloud

BB

-30 -20 -10 O 10 =30 -20 -10 © 10 =30 -20 -10 @ 10

If semantic labels are not available with your data set, you can compute them using a deep learning
network. For more information, see the “Lidar Point Cloud Semantic Segmentation Using
SqueezeSegV?2 Deep Learning Network” on page 1-173 example.

Detect Road Shape

Apply the beam model to the off-road points to detect the road shape. For more information about the
beam model, see [1] on page 1-0 and [2] on page 1-0

1

Launch a sequence of beams from a launching point. In this example, the launching point is the
location of the lidar sensor on the ego vehicle.

Divide the beams into beam zones according to the angular resolution of the sensor. In this
example, the angular resolution is 1 degree.

Determine the beam angles and beam lengths with respect to the launching point.

For each beam zone, determine the distance between the launching point and closest point in
that zone and the distance between the launching point and the farthest point in that zone.

Compute the normalized beam length of a beam zone as the ratio of the shortest and longest
distance between the launching point and a point in that zone.

Apply a customized version of the toe-finding algorithm [3] on page 1-0 to the normalized
beam lengths to find the road shape.

The center angle of each toe slice is the road segmentation angle with respect to the launching
point.

% Select the off-road point cloud
offRoadPtCloud = select(ptCloud,offRoadLabelsIdx);

% Use the helperRoadSegmentationAngles helper function defined at the end

1-17

1 Lidar Toolbox Featured Examples

% of this example to compute the road segmentation angles
[dk, roadAngles] = helperRoadSegmentationAngles(offRoadPtCloud);

roadAngles = sort(roadAngles);
roadAngles(end+1) = roadAngles(1);

% Visualize the off-road points and the toe slices indicating the road shape

figure
subplot(1,2,1)
pcshow(offRoadPtCloud,BackgroundColor=[1 1 1])

view(2)
title("0ff-Road Point Cloud")
subplot(1,2,2)

polarplot(dk)

title("Road Shape")

‘Waming: This callback workflow is not currently supported.
See Callback Definition in the MATLAE documentation.

[RLTIFLW IS] | Il'.ll.nle

Off-Road Point Cloud 120° l_dr_ll &0
- |_ ||
20t e W 0.5
l wﬂi L 150° l) é ", 30
10F° ’ 0.4 AN
; J P .
IIIr -""--._______ d.u'?,»"# \
ot 1807 - | 0"
' [— — |II A .--.-.-"-.__ II
-10 _——.—-_‘nn_'ﬂ-.-q..l._l - J |'I '.". . .._,.'l
1 = 'II II'-. =
Bt 210° f 330°
2ofb 1 0o {
30 20 0 0 10 240° -2;];-' 300

Detect Road Curbs
Extract the feature curb points from the on-road points. Process each scan line of the on-road point
cloud individually to extract the points satisfying the threshold on these features:

* Smoothness Feature [2] on page 1-0 — This feature checks for the smoothness of the area
around a point. A higher smoothness value indicates that the point is an edge point, and a lower
values indicates that the point is a plane point. Use the points with smoothness value greater than
the specified smoothness threshold for further computation.

+ Height Difference Feature [2] on page 1-0 — This feature checks for the standard deviation

and the maximum difference of height around a point. Use the points with these values within the

specified bounds for further computation.
— This feature checks for the

* Horizontal and Vertical Continuity Feature [1] on page 1-0
horizontal and vertical continuity of a point with respect to its immediate neighboring points. Use

1-18

Curb Detection in 3-D Lidar Point Cloud

the points with horizontal and vertical distances greater than the specified threshold for further
computation.

% Set up the parameters for detecting the curbs
numScanLines = 64;
numNeighborsOnEachSide = 5;

% Define the threshold for the smoothness feature
smoothnessThreshold = 0.001;

% Define the thresholds for the height difference feature (in meters)

heightThreshold.heightMin = 0.02;
heightThreshold.heightMax = 0.25;
heightThreshold.heightSDMin = 0.02;
heightThreshold.heightSDMax = 0.07;

% Define the threshold for the horizontal and vertical continuity feature
% (in degrees)
angleResolutionThreshold = 0.24;

ptInfluence = -2*numNeighborsOnEachSide;

Apply the height difference, smoothness, and horizontal and vertical continuity feature thresholds to
the on-road points.

% Use the helperDetectFeatureCurbs helper function defined at the

% end of this example to detect the feature curb points

[featureCurbPoints,validSmoothnessIndices,validHeightDifferencelIndices,
validHorizontalVerticalContinuityIndices] = helperDetectFeatureCurbs(
onRoadLabelsIdx,numScanLines,ptCloud, numNeighborsOnEachSide, ...
ptInfluence,smoothnessThreshold,heightThreshold,angleResolutionThreshold);

Visualize the detected features.

figure

subplot(2,2,1)

pcshow(select(ptCloud,onRoadLabelsIdx & ...
validSmoothnessIndices))

view(2)

title("Smoothness Feature")

subplot(2,2,2)

pcshow(select(ptCloud,onRoadLabelsIdx & ...
validHeightDifferencelIndices))

view(2)

title("Height Difference Feature")

subplot(2,2,3)

pcshow(select(ptCloud,onRoadLabelsIdx & ...
validHorizontalVerticalContinuityIndices))

view(2)

title("Horizontal and Vertical Continuity Feature")

subplot(2,2,4)
pcshow(featureCurbPoints)
view(2)

title("Feature Curb Points")

1-19

1 Lidar Toolbox Featured Examples

1-20

Smoothness Feature Height Difference Feature

Wamning: This callback workflow is not currently supported
See Callback Definition in the MATLAE documentation

30 20 10 0 10 -3 -20 10 0 10

Horizontal and Vertical Continuity Feature Feature Curb Points

30 -20 .10 0 10 30 -20 10 0 10

Next, compute the candidate curb points from the feature curb points:

1 Classify the feature curb points into different segments based on the road segmentation angles.

2 In each segment, define the points closest to the road segmentation lines as seed points. These
seed points can be noisy and contain false positive points.

3 To improve the results, and to compute the candidate curb points, parabolically model the seed
curbs in each segment, and use the RANSAC algorithm to remove the false positives that do not
match the parabolic model.

% Define the threshold for RANSAC based filtering
maxDistance = 0.1;

% Define the segment size to find the seed curb points along the road
% segmentation lines
stepSegment = 0.1;

% Define the length of the road segmentation lines to search for the seed
% curb points
roadLength = hypot(diff(featureCurbPoints.XLimits),diff(featureCurbPoints.YLimits))/2;

% Use the helperDetectCandidateCurbs helper function, attached to this

% example as a supporting file, to compute the candidate curb points from

% the feature curb points

candidateCurbPoints = helperDetectCandidateCurbs(roadLength, roadAngles,
featureCurbPoints, stepSegment,maxDistance);

% Visualize the point cloud overlaid with the candidate curb points
figure
pcshow(select(ptCloud, roildx).Location, "w")

Curb Detection in 3-D Lidar Point Cloud

view(2)

hold on

pcshow(candidateCurbPoints, "r",MarkerSize=200)
view(2)

hold off

title("Candidate Curb Points Detected")

Candidate Curb F"oin_ts I;letected

= e ——_

Waming: This callback workflow is not currently supported
See Callback Definition in the MATLAE documentation

o

Track Curb Points

Loop through and process the lidar data to extract and track the candidate curb points. Tracking curb
points improves the robustness of curb detection. You can halt the curb tracking at the segmented
roads, and restart it when the ego vehicle leaves the segmented roads. Curb tracking involves

polynomial fitting on the XY-points using a 2-degree polynomial represented as y = ax? + bx + ¢,
where a, b, and c are the polynomial parameters. Curb tracking is a two-step process:

1 Track curb polynomial parameters a and b to control the curvature of the polynomial.
2 Track curb polynomial parameter ¢ to control the drift of the polynomial.

Update these parameters by using a Kalman filter with a constant acceleration motion model. Use the
configureKalmanFilter function to initialize a Kalman filter.

player = pcplayer([-35 20],[-25 25],[-10 10],MarkerSize=6);
% Initial values for Kalman filter
initParams.initialEstimateError = [1 1 1]*1le-1;
initParams.motionNoise = [1 1 1]*1le-7;
initParams.measurementNoise = 10;

leftTracker.drift = [1;

1-21

1 Lidar Toolbox Featured Examples

leftTracker.filteredDrift = [];
leftTracker.curveSmoothness = [];
leftTracker.filteredCurveSmoothness = [];

rightTracker.drift = [];
rightTracker.filteredDrift = [];
rightTracker.curveSmoothness = [];
rightTracker.filteredCurveSmoothness = [];

isTracking = false;
isLeftCurbTrackingInitialised = false;
isRightCurbTrackingInitialised = false;
isPrevAngleSet = false;

for fileIdx = 1l:numel(ptCloudData)
% Load the point cloud and it's ground truth labels
ptCloud = ptCloudData{fileldx};
labels = labelsData{fileldx};

% Find the points lying within ROI

xLim = [-35 20];

yLim = [-25 25];

roildx = ptCloud.Location(:,:,1) >= xLim(1) & ...
ptCloud.Location(:,:,1) <= xLim(2) & ...
ptCloud.Location(:,:,2) >= yLim(1) & ...
ptCloud.Location(:,:,2) <= yLim(2);

labels(~roildx) = nan;

% Classify the points into on-road points and off-road points

onRoadLabelsIdx = (labels == 3| labels == 4 | labels == 6);

offRoadLabelsIdx = (labels == 2 | labels == 11 | labels == 12 |
labels == 13);

offRoadPtCloud = select(ptCloud,offRoadLabelsIdx);

% Compute the road segmentation angles using off-road points
[dk, roadAngles] = helperRoadSegmentationAngles(offRoadPtCloud);
if ~isempty(roadAngles)
roadAngles = sort(roadAngles);
roadAngles(end+1) = roadAngles(1);
if ~isPrevAngleSet && numel(roadAngles) ==
prevAngle = roadAngles;
isPrevAngleSet = true;
end
end

Compute number of road segments in front and behind the

ego vehicle

numFrontRoadSegments = sum(roadAngles(l:end-1) < 95 |
roadAngles(l:end-1) > 270);

numRearRoadSegments = sum(~(roadAngles(l:end-1) < 95 |

roadAngles(1l:end-1) > 270));

%
%

% Check if curb tracking should be enabled or disabled
if ~isTracking
if (numFrontRoadSegments < numRearRoadSegments) ||
(numel(roadAngles) == 3)
isTracking = true;

1-22

Curb Detection in 3-D Lidar Point Cloud

end
else
if numFrontRoadSegments > numRearRoadSegments
isTracking = false;
isLeftCurbTrackingInitialised = false;
isRightCurbTrackingInitialised = false;
isPrevAngleSet = false;
end
if numel(roadAngles) < 3 && isPrevAngleSet
roadAngles = prevAngle;
end
end
prevAngle = roadAngles;

% Compute the candidate curb points using on-road points

featureCurbPoints = helperDetectFeatureCurbs(onRoadLabelsIdx,
numScanLines, ptCloud, numNeighborsOnEachSide,ptInfluence,
smoothnessThreshold,heightThreshold,angleResolutionThreshold);

roadLength = hypot(diff(featureCurbPoints.XLimits),
diff(featureCurbPoints.YLimits))/2;

candidateCurbPoints = helperDetectCandidateCurbs(roadLength,
roadAngles, featureCurbPoints, stepSegment,maxDistance);
if isempty(candidateCurbPoints)
continue;
end

% Divide the candidate curb points into front and rear curb points

% based on the ego vehicle position

frontCandidateCurbPoints = candidateCurbPoints(
candidateCurbPoints(:,1) >= 0,:);

rearCandidateCurbPoints = candidateCurbPoints(
candidateCurbPoints(:,1) < 0,:);

xVal = linspace(min(frontCandidateCurbPoints(:,1)),xLim(2),80);

if isTracking
leftCurb = [];
rightCurb = [1];

model = pcfitplane(select(ptCloud,onRoadLabelsIdx),0.1,
[0 0 1]);

modelParams = model.Parameters;

candidateAngles = atan2d(frontCandidateCurbPoints(:,2),
frontCandidateCurbPoints(:,1));

candidateAngles(candidateAngles < 0) = candidateAngles(
candidateAngles < 0) + 360;

% Divide the candidate curb points, into left and right curb points
if (roadAngles(1l) >= 270 || roadAngles(l) < 90) && ...
(roadAngles(2) >= 90 && roadAngles(2) < 270)
idx = candidateAngles >= roadAngles(l) & ...
candidateAngles < roadAngles(2);
else
idx = candidateAngles >= roadAngles(2) |
candidateAngles < roadAngles(1);
end

1-23

1 Lidar Toolbox Featured Examples

leftCandidateCurbPoints = frontCandidateCurbPoints(idx,:);
rightCandidateCurbPoints = frontCandidateCurbPoints(~idx, :);

% Compute polynomials to track left and right curbs

leftPolynomial = fitPolynomialRANSAC (
leftCandidateCurbPoints(:,1:2),2,0.1);

rightPolynomial = fitPolynomialRANSAC (
rightCandidateCurbPoints(:,1:2),2,0.1);

if ~isempty(leftPolynomial)
if ~islLeftCurbTrackingInitialised
[leftFilter,leftCurb] = helperTrackCandidateCurbs(
leftPolynomial, xVal,modelParams,initParams);
isLeftCurbTrackingInitialised = true;
else
[LeftPolynomial, leftCurb,leftTracker] = helperTrackCandidateCurbs(
leftPolynomial, xVal, modelParams,
leftFilter, leftTracker);
end
end
if ~isempty(rightPolynomial)
if ~isRightCurbTrackingInitialised
[rightFilter, rightCurb] = helperTrackCandidateCurbs(
rightPolynomial, xVal,modelParams,initParams);
isRightCurbTrackingInitialised = true;
else
[rightPolynomial, rightCurb, rightTracker] = helperTrackCandidateCurbs(
rightPolynomial, xVal,modelParams,
rightFilter, rightTracker);
end
end
ptCloud = select(ptCloud, roildx);

% Use the helperVisualiseOQutput helper function, attached to this
% example as a supporting file to visualise the final output
outputPtCloud = helperVisualiseOutput(ptCloud, leftCurb, rightCurb,
rearCandidateCurbPoints);
else
ptCloud = select(ptCloud, roildx);

% Use the helperVisualiseQutput helper function, attached to this
% example as a supporting file to visualise the final output
outputPtCloud = helperVisualiseOutput(ptCloud, candidateCurbPoints);

end

if isOpen(player)
view(player,outputPtCloud);
view(player.Axes, [0 90])
camva(player.Axes,0)

end

end

1-24

Curb Detection in 3-D Lidar Point Cloud

F 1

f]

File Edit View Insert Tools Desktop Window Help

Ddde @08k

Results

To analyze the curb detection results, compare them against the tracked curb polynomials by plotting
them in figures. Each plot compares the parameters with and without the Kalman filter. The first
figure compares the drift of curbs along the y-axis, and the second figure compares the smoothness of
the curb polynomials. Smoothness is the rate of change of the slope of the curb curve.

figure

ax = subplot(2,1,1);
plot(leftTracker.drift)

hold on
plot(leftTracker.filteredDrift)

hold off

title("Left Curb Drift Along Y-axis")
ax.Position(2) = ax.Position(2) - 0.08;
ax = subplot(2,1,2);
plot(rightTracker.drift)

hold on
plot(rightTracker.filteredDrift)

hold off

title("Right Curb Drift Along Y-axis")

1-25

1 Lidar Toolbox Featured Examples

ax.Position(2) = ax.Position(2) - 0.06;

Lgnd = legend("Drift Values","Filtered Drift Values",
"Orientation","Horizontal");

Lgnd.Position(1l:2) = [0.29 0.9];

Drrift \Values Fittered Dirift Values

Left Curb Drift Along Y-axis

3.4 T T

3.3

3.1

s
=]
T

e
551
T

figure

ax = subplot(2,1,1);

plot(leftTracker.curveSmoothness);

hold on

plot(leftTracker.filteredCurveSmoothness)

hold off

title("Left Curve Smoothness")

ax.Position(2) = ax.Position(2) - 0.08;

ax = subplot(2,1,2);

plot(rightTracker.curveSmoothness);

hold on

plot(rightTracker.filteredCurveSmoothness)

hold off

title("Right Curve Smoothness")

ax.Position(2) = ax.Position(2) - 0.06;

Lgnd = legend("Curve Smoothness","Filtered Curve Smoothness",
"Orientation", "Horizontal");

Lgnd.Position(1l:2) = [0.23 0.9];

1-26

Curb Detection in 3-D Lidar Point Cloud

Fittered Curve Smoothness

Curve Smoothness

52 103 Left Curve Smoothness
1 - -
0 L -
SN
_1 1 " 1 1 1 1 1
0 2 4 B B 10 12 14 16 18
I T Right Curve Smoothness
2F f , .
0 - K P lIIII -
/ TN TS / g
.2 - -V .
_4 i i i i i i i i
0 2 4 & B 10 12 14 16 18

Helper Functions

The helperDownloadPandasetData helper function loads the lidar data set into the MATLAB
workspace.

function [ptCloudData,labelsDatal = helperDownloadPandasetData()

lidarDataTarFile = matlab.internal.examples.downloadSupportFile("lidar",
"data/Pandaset LidarData.tar.gz");

filepath = fileparts(lidarDataTarFile);

outputFolder = fullfile(filepath, "Pandaset");

% Check if tar.gz file is downloaded, but not uncompressed.
if (~exist(fullfile(outputFolder,"Lidar"),"file")) ...
&&(~exist(fullfile(outputFolder, "semanticLabels"),"file"))

untar(lidarDataTarFile,outputFolder);
end

lidarData = fullfile(outputFolder,"Lidar");
labelsFolder = fullfile(outputFolder,"semanticLabels");

ptCloudData = cell(27,1);
labelsData = cell(27,1);
count = 1;
for fileldx = 1041:1067
ptCloud = pcread(fullfile(lidarData, fileIdx+".pcd"));

% The example follows the convention that ego vehicle motion is along
% the positive x-axis, hence, transform the point cloud

1-27

1 Lidar Toolbox Featured Examples

theta = -90;
rot = [cosd(theta) sind(theta) 0;
-sind(theta) cosd(theta) 0;

0 0 1];
trans = [0 0 0];
tform = rigid3d(rot,trans);

ptCloud = pctransform(ptCloud, tform);
ptCloudData{count} = ptCloud;
labelsData{count} = imread(fullfile(labelsFolder,fileldx+".png"));
count = count + 1;
end
end

The helperRoadSegmentationAngles helper function returns the road segmentation angles.

function [dk,angles] = helperRoadSegmentationAngles (offRoadPtCloud)

Compute the angles of all the points in the off-road point cloud with

respect to the launching point (origin)

roadAngles = atan2d(offRoadPtCloud.Location(:,b2),
offRoadPtCloud.Location(:,1));

roadAngles(roadAngles < 0) = roadAngles(roadAngles < 0) + 360;

idx = floor(roadAngles);

)
©
)

©

minBeamLength
maxBeamLength
for k = 1:360
% Use the points in the kth zone to compute the normalized beam length
zonePtsIdx = idx >= (k-1) & idx < k;
if any(zonePtsIdx)
% Shortest distance between the zone points and the launching point
minBeamLength(k) = min(hypot(
offRoadPtCloud.Location(zonePtsIdx,1),
offRoadPtCloud.Location(zonePtsIdx,2)));

ones(360,1);
ones(360,1);

% Longest distance between the zone points and the launching point
maxBeamLength (k) = max(hypot(
offRoadPtCloud.Location(zonePtsIdx,1),
offRoadPtCloud.Location(zonePtsIdx,2)));
end
end
% Compute the normalized beam length
dk = minBeamLength./maxBeamLength;
dk(dk < 0.25) = 0;
dk(dk < mean(dk)) = 0;

peaksStart = find(diff(dk == 1) == 1) + 1;
peakskEnd = find(diff(dk == 1) == -1);
% Find indices of peaks to be merged
idx = (peaksStart - peaksEnd) < 15;
peaksStart(idx) = [];
peaksEnd(idx) = [];
if isempty(peaksStart) || isempty(peaksEnd)
angles = [];
else
if peaksStart(l) ~=1
peaksStart = [1; peaksStart];
end

1-28

Curb Detection in 3-D Lidar Point Cloud

if peaksEnd(end) ~= 360
peaksEnd = [peaksEnd; 3601];

end

peaks = [peaksStart peaksEnd];

% Remove the outliers in peaks computation
peaks (diff(peaks,[],2) <= 3,:) = [1;

% Compute the road segmentation angles from the peaks
angles = mean(peaks,2);
if abs(angles(1l) + angles(end) - 360) > 0 & ...
abs(angles(1l) + angles(end) - 360) < 20
angles(1l) = angles(1l) + angles(end);
if angles(1l) > 360
angles(1l) = angles(1l) - 360;
end
angles(end) = [1;
end

% Update the peaks information
dk = zeros(360,1);
for i = 1l:size(peaks,1)
dk(peaks(i,1l):peaks(i,2)) = 1;
end
end
end

The helperCheckSmoothness helper function returns the indices of points satisfying the
smoothnessThreshold condition.

function isSmoothnessValid = helperCheckSmoothness(neighborPtCloud,
currentPt,ptInfluence,numNeighborsOnEachSide, smoothnessThreshold)
isSmoothnessValid = false(size(neighborPtCloud,1),1);

diffX = ptInfluence*currentPt(:,1) + sum(neighborPtCloud(:,1,:),3);
diffY = ptInfluence*currentPt(:,2) + sum(neighborPtCloud(:,2,:),3);
diffZ = ptInfluence*currentPt(:,3) + sum(neighborPtCloud(:,3,:),3);

numerator = vecnorm([diffX diffY diffz]')"';
denominator = numNeighborsOnEachSide*vecnorm(currentPt')";

isSmoothnessValid(numerator./denominator > smoothnessThreshold) = true;
end

The helperCheckHeightDifference helper function returns the indices of points satisfying the
heightThreshold conditions.

function isHeightDifferenceValid = helperCheckHeightDifference(
neighborPtCloud, heightThreshold)
isHeightDifferenceValid = false(size(neighborPtCloud,1),1);

heightDifference = max(squeeze(neighborPtCloud(:,3,:)),[]1,2) -
min(squeeze(neighborPtCloud(:,3,:)),[]1,2);
heightStdDev = std(squeeze(neighborPtCloud(:,3,:)),0,2);

isHeightDifferenceValid(...
heightStdDev > heightThreshold.heightSDMin & ...
heightStdDev <= heightThreshold.heightSDMax & ...
heightDifference >= heightThreshold.heightMin & ...

1-29

1 Lidar Toolbox Featured Examples

heightDifference <= heightThreshold.heightMax) = true;
end

The helperCheckHorizontalVerticalContinuity helper function returns the indices of points
satisfying the horizontalContinuityThreshold and verticalContinuityThreshold
conditions.

function isHorizontalVerticalContinuityValid = helperCheckHorizontalVerticalContinuity(
leftPt,currentPt, rightPt,angleResolutionThreshold)
isHorizontalVerticalContinuityValid = false(size(currentPt,1),1);

verticalAngle = atan2d(currentPt(:,3),hypot(currentPt(:,1),
currentPt(:,2)));

horizontalContinuityThreshold = hypot(currentPt(:,1),currentPt(:,2))* ...
angleResolutionThreshold*(pi/180);

verticalContinuityThreshold = horizontalContinuityThreshold.* ...
sind(verticalAngle);

distancelLeftHorizontal = sqrt(sum((currentPt(:,1:2) - leftPt(:,1:
distanceRightHorizontal = sqrt(sum((currentPt(:,1:2) - rightPt(:,

=N
~

)
:2)).72,2));

distancelLeftVertical = abs(currentPt(:,3) - leftPt(:,3));
distanceRightVertical = abs(currentPt(:,3) - rightPt(:,3));

isHorizontalVerticalContinuityValid(distanceLeftHorizontal >= ...
horizontalContinuityThreshold & ...
distanceRightHorizontal >= horizontalContinuityThreshold & ...
distancelLeftVertical >= verticalContinuityThreshold & ...
distanceRightVertical >= verticalContinuityThreshold) = true;
end

The helperDetectFeatureCurbs helper function detects the feature curb points from the on-road
points.

function [featureCurbPoints,validSmoothnessIndices,
validHeightDifferencelIndices,
validHorizontalVerticalContinuityIndices] = helperDetectFeatureCurbs(
onRoadLabelsIdx,numScanLines,ptCloud, numNeighborsOnEachSide,
ptInfluence,smoothnessThreshold,heightThreshold,angleResolutionThreshold)

% Declare and initialise the variables to store the indices of the points
% satisfying the feature thresholds

validSmoothnessIndices = false(size(onRoadlLabelsIdx));
validHeightDifferenceIndices = false(size(onRoadlLabelsIdx));
validHorizontalVerticalContinuityIndices = false(size(onRoadLabelsIdx));

for i = l:numScanLines
% Extract the points lying in a scan line
scanLine = squeeze(ptCloud.Location(i,:,:));
% Extract the on-road points from the scan line points
onRoadPtsInScanLine = scanLine(onRoadLabelsIdx(i,:),:);
validPoints = find(onRoadLabelsIdx(i,:));
if size(onRoadPtsInScanLine,1l) >= 2*numNeighborsOnEachSide + 1

leftPoints = nan(size(onRoadPtsInScanlLine,1),3,
numNeighborsOnEachSide) ;

1-30

Curb Detection in 3-D Lidar Point Cloud

end

end

rightPoints = nan(size(onRoadPtsInScanLine,1),3,
numNeighborsOnEachSide) ;

onRoadPtsInScanLineCyclic = [...
onRoadPtsInScanLine(end: -1:end-numNeighborsOnEachSide+1, :);
onRoadPtsInScanLine;
onRoadPtsInScanLine(1l:numNeighborsOnEachSide,:)];

for j = numNeighborsOnEachSide+1:
size(onRoadPtsInScanLineCyclic,1)-numNeighborsOnEachSide
% Select the left neighbor points of each point
leftPoints(j-numNeighborsOnEachSide,:,:) = reshape(...
onRoadPtsInScanLineCyclic(j-numNeighborsOnEachSide:j-1,:)",
1,3, numNeighborsOnEachSide);

% Select the right neighbor points of each point
rightPoints(j-numNeighborsOnEachSide,:,:) = reshape(.
onRoadPtsInScanLineCyclic(j+1:j+numNeighborsOnEachSide,:)",
1,3, numNeighborsOnEachSide);
end
leftPoints(isnan(leftPoints(:,1,1)),:,:) = []1;
rightPoints(isnan(rightPoints(:,1,1)),:,:) = [];
% Use the helperCheckSmoothness helper function to find the points
% satisfying the smoothness feature
validSmoothnessIndicesInScanLine = helperCheckSmoothness (
cat(3,leftPoints, rightPoints),onRoadPtsInScanLine,
ptInfluence,numNeighborsOnEachSide,
smoothnessThreshold) . *validPoints';

validSmoothnessIndices(1i,
validSmoothnessIndicesInScanlLine(
validSmoothnessIndicesInScanLine ~= 0)) = true;

% Use the helperCheckHeightDifference helper function to find the
% points satisfying the height difference feature

validHeightDifferenceIndicesInScanLine = helperCheckHeightDifference(

cat(3,leftPoints, rightPoints),heightThreshold).*validPoints"';

validHeightDifferenceIndices(1i, .
validHeightDifferenceIndicesInScanLine(
validHeightDifferenceIndicesInScanLine ~= 0)) = true;

Use the helperCheckHorizontalVerticalContinuity helper function
to find the points satisfying the horizontal and vertical

% continuity feature
validHorizontalVerticalContinuityIndicesInScanLine = ...
helperCheckHorizontalVerticalContinuity(.
leftPoints(:,:,numNeighborsOnEachSide),onRoadPtsInScanLine,
rightPoints(:,:,1),angleResolutionThreshold).*validPoints"';

o° o°

validHorizontalVerticalContinuityIndices(1i,
validHorizontalVerticalContinuityIndicesInScanLine(

validHorizontalVerticalContinuityIndicesInScanLine ~= 0)) = true;

featureCurbPoints = select(ptCloud,onRoadLabelsIdx & ...
validHorizontalVerticalContinuityIndices & ...

1-31

1 Lidar Toolbox Featured Examples

validSmoothnessIndices & ...

validHeightDifferencelIndices);
featureCurbPoints = pcdenoise(featureCurbPoints);
end

The helperTrackCandidateCurbs helper function tracks the candidate curb points using the
Kalman filter.

function varargout = helperTrackCandidateCurbs(varargin)
polynomial = varargin{1l};
xVal = varargin{2};
modelParams = varargin{3};
if numel(varargin) == 4
initParams = varargin{4};
curvelInitialParameters = polynomial(1l:2);
driftInitialParameters = polynomial(3);

% Configure Kalman filter

filter.curveFilter = configureKalmanFilter(
"ConstantAcceleration",curvelInitialParameters,
initParams.initialEstimateError,
initParams.motionNoise,
initParams.measurementNoise);

filter.driftFilter = configureKalmanFilter(
"ConstantAcceleration",driftInitialParameters,
initParams.initialEstimateError,
initParams.motionNoise,
initParams.measurementNoise);

varargout{l} = filter;
else

filter = varargin{4};

tracker = varargin{5};

predict(filter.curveFilter);
predict(filter.driftFilter);

tracker.drift = [tracker.drift;polynomial(3)];
tracker.curveSmoothness = [tracker.curveSmoothness;
polynomial(1l)];

% Correct polynomial using Kalman filter

updatedCurveParams = correct(filter.curveFilter,
polynomial(1:2));

updatedDriftParams =
polynomial(3));

correct(filter.driftFilter,

% Update the polynomial
polynomial = [updatedCurveParams,updatedDriftParams];
tracker.filteredDrift = [tracker.filteredDrift;polynomial(3)];
tracker.filteredCurveSmoothness = [tracker.filteredCurveSmoothness;
polynomial(1)];

varargout{l} = polynomial;
varargout{3} = tracker;

end

% Y-coordinate estimation

yVal = polyval(polynomial,xVal);

1-32

Curb Detection in 3-D Lidar Point Cloud

% Z-coordinate estimation
zVal = (-modelParams(1l)*xVal - ...
modelParams(2)*yVal - modelParams(4))/modelParams(3);

% Final Curb

curb = [xVal' yVal' zVal'l;
varargout{2} = curb;

end

References

[1]Zhang, Yihuan, Jun Wang, Xiaonian Wang, and John M. Dolan. "Road-Segmentation-Based Curb
Detection Method for Self-Driving via a 3D-LiDAR Sensor." IEEE Transactions on Intelligent
Transportation Systems 19, no. 12 (December 2018): 3981-91. https://doi.org/10.1109/
TITS.2018.2789462.

[2] Wang, Guojun, Jian Wu, Rui He, and Bin Tian. "Speed and Accuracy Tradeoff for LiDAR Data
Based Road Boundary Detection." IEEE/CAA Journal of Automatica Sinica 8, no. 6 (June 2021): 1210-
20. https://doi.org/10.1109/JAS.2020.1003414.

[3] Hu, Jiuxiang, Anshuman Razdan, John C. Femiani, Ming Cui, and Peter Wonka. "Road Network
Extraction and Intersection Detection From Aerial Images by Tracking Road Footprints." IEEE
Transactions on Geoscience and Remote Sensing 45, no. 12 (December 2007): 4144-57. https://
doi.org/10.1109/TGRS.2007.906107.

1-33

https://doi.org/10.1109/TITS.2018.2789462
https://doi.org/10.1109/TITS.2018.2789462
https://doi.org/10.1109/JAS.2020.1003414
https://doi.org/10.1109/TGRS.2007.906107
https://doi.org/10.1109/TGRS.2007.906107

1 Lidar Toolbox Featured Examples

Code Generation for Lidar Object Detection Using
SqueezeSegV2 Network

1-34

This example shows how to generate CUDA® MEX code for a lidar object detection network. In the
example, you first segment the point cloud with a pretrained network, then cluster the points and fit
3-D bounding boxes to each cluster. Finally, you generate MEX code for the network.

The lidar object detection network in this example is a SqueezeSegV2 [1 on page 1-0] network
pretrained on the PandaSet data set, which contains 8240 unorganized lidar point cloud scans of
various city scenes captured using a Pandar64 sensor. The network can segment 12 different classes
and fit bounding boxes to objects in the car class.

Third-Party Prerequisites

Required

* CUDA enabled NVIDIA® GPU and compatible driver
Optional

For non-MEX builds such as static libraries, dynamic libraries, or executables, this example has the
following additional requirements.

* NVIDIA toolkit
* NVIDIA cuDNN library

* Environment variables for the compilers and libraries. For more information, see “Third-Party
Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify if the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig("host");
envCfg.DeepLibTarget = "cudnn";
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Load SqueezeSegV2 Network and Entry-Point Function

Use the getSqueezeSegV2PandasetNet function, attached to this example as a supporting file, to
load the pretrained SqueezeSegV2 network. For more information on how to train this network, see
“Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network” on page 1-
173.

net = getSqueezeSegV2PandasetNet;

The pretrained network is a DAG network. To display an interactive visualization of the network
architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

The segmentClusterDetect entry-point function takes in the organized point cloud matrix as an
input and passes it to a trained network to segment, cluster and detect the bounding boxes. The
segmentClusterDetect function loads the network object into a persistent variable and reuses the
persistent object for subsequent prediction calls.

Code Generation for Lidar Object Detection Using SqueezeSegV2 Network

type('segmentClusterDetect.m');

function [op,bboxes] = segmentClusterDetect(I)
Entry point function to segment, cluster and fit 3-D boxes.
Copyright 2021 The MathWorks, Inc.

)
©
)

©

s#codegen
persistent net;

if isempty(net)
net = coder.loadDeepLearningNetwork('trainedSqueezeSegV2PandasetNet.mat');
end

% Pass input.
predictedResult = predict(net,I);
[~,op] = max(predictedResult,[],3);

% Get the indices of points for the required class.
carldx = (op == 7);

% Select the points of required class and cluster them based on distance.
ptCldMod = select(pointCloud(I(:,:,1:3)),carldx);
[labels,numClusters] = pcsegdist(ptCldMod,0.5);

% Select each cluster and fit a cuboid to each cluster.
bboxes = zeros(0,9);
for num = 1l:numClusters

labelldx = (labels == num);

% Ignore cluster that has points less than 150 points.
if sum(labelldx, 'all') < 150

continue;
end

pcSeg = select(ptCldMod, labelldx);
mdl = pcfitcuboid(pcSeq);
bboxes = [bboxes;mdl.Parameters];
end
end

Execute Entry-Point Function

Read the point cloud and convert it to organized format using pcorganize function. For more details
on unorganized to organized point cloud conversion, see the “Unorganized to Organized Conversion
of Point Clouds Using Spherical Projection” on page 1-265 example.

ptCloudIn = pcread("pandasetDrivingData.pcd");

vbeamAngles

hResolution = 1856;
params = lidarParameters(vbeamAngles,hResolution);
ptCloudOrg = pcorganize(ptCloudIn,params);

1-35

[15.0000 11.0000 8.0000 5.0000 3.0000 2.0000 1.8333 1.6667
0.5000 0.3333 0.1667 0 -0.1667 -0.3333 -0.5000 -0.6667
-1.8333 -2.0000 -2.1667 -2.3333 -2.5000 -2.6667 -2.8333 -3.0000
-4.1667 -4.3333 -4.5000 -4.6667 -4.8333 -5.0000 -5.1667 -5.3333
-9.0000 -10.0000 -11.0000 -12.0000 -13.0000 -14.0000 -19.0000 -25.0000];

1 Lidar Toolbox Featured Examples

Convert the organized point cloud to a 5-channel input image using the helperPointCloudToImage
function, attached to the example as a supporting file.

I = helperPointCloudToImage(ptCloudOrg);

Use the segmentClusterDetect entry-point function to get the predicted bounding boxes for cars
and the segmentation labels.

[op,bboxes] = segmentClusterDetect(I);
Get the location and color map of the output.
cmap = helperLidarColorMap;

colormap = cmap(op,:);

loc = reshape(I(:,:,1:3),[1,3);

Display the point cloud with segmentation output and bounding boxes.

figure

ax = pcshow(loc,colormap);

showShape("cuboid", bboxes,Parent=ax,0pacity=0.1, ...
Color="green",LineWidth=0.5);

zoom(ax,2);

Generate CUDA MEX Code

To generate CUDA® code for the segmentClusterDetect entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the

1-36

Code Generation for Lidar Object Detection Using SqueezeSegV2 Network

coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.

cfg = coder.gpuConfig('mex"');

cfg.TargetlLang = 'C++';
cfg.DeepLearningConfig = coder.DeeplLearningConfig(TargetLibrary='cudnn');

args = {coder.typeof(I,[64 1856 5],[0 0 0])};
codegen -config cfg segmentClusterDetect -args args -report
Code generation successful: View report

To generate CUDA® code for the TensorRT target, create and use a TensorRT deep learning
configuration object instead of the CuDNN configuration object.

Run Generated MEX Code

Call the generated CUDA MEX code on the 5-channel image I, created from ptCloudIn.
[op,bboxes] = segmentClusterDetect mex(I);

Get the color map of the output.

colormap = cmap(op,:);

Display the output.

figure

axl = pcshow(loc,colormap);
showShape("cuboid",bboxes,Parent=ax1l,0pacity=0.1, ...

Color="green",LineWidth=0.5);
zoom(ax1,2);

1-37

1 Lidar Toolbox Featured Examples

Supporting Functions

Define Lidar Color Map

The helperLidarColorMap function defines the colormap used by the lidar dataset.

function cmap = helperLidarColorMap

% Lidar color map for the pandaset classes

cmap = [[30 30 30];
[0 255 0];
[255 150 255];
[255 0 255];
[255 0 0O];
[90 30 150];
[245 150 100];
[250 80 100];
[150 60 30];
[255 255 0];
[0 200 255];
[170 100 150];
[30 30 255]1;

cmap = cmap./255;

end

1-38

0° 0% 0° o° 0° o° A° o° O° O° o° o° o°

UnClassified
Vegetation
Ground

Road

Road Markings
Side Walk

Car

Truck

Other Vehicle
Pedestrian
Road Barriers
Signs
Building

Code Generation for Lidar Object Detection Using SqueezeSegV2 Network

References

[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2:
Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from
a LiDAR Point Cloud.” In 2019 International Conference on Robotics and Automation (ICRA), 4376-
82. Montreal, QC, Canada: IEEE, 2019. https://doi.org/10.1109/ICRA.2019.8793495.

[2] PandaSet is provided by Hesai and Scale under the CC-BY-4.0 license.

1-39

https://doi.org/10.1109/ICRA.2019.8793495
https://scale.com/open-datasets/pandaset
https://creativecommons.org/licenses/by/4.0/

1 Lidar Toolbox Featured Examples

Lidar Object Detection Using Complex-YOLO v4 Network

1-40

This example shows how to train a Complex-YOLO v4 network to perform object detection on point
clouds.

The Complex-YOLO [1 on page 1-0] approach is effective for lidar object detection as it directly
operates on bird's-eye-view RGB maps that are transformed from the point clouds. In this example,
using the Complex-YOLO approach, you train a YOLO v4 [2 on page 1-0] network to predict both 2-
D box positions and orientation in the bird's-eye-view frame. You then project the 2-D positions along
with the orientation predictions back onto the point cloud to generate 3-D bounding boxes around the
object of interest.

Download Lidar Data Set

This example uses a subset of the PandaSet data set [3 on page 1-0] that contains 2560
preprocessed organized point clouds. Each point cloud covers 360 degrees of view and is specified as
a 64-by-1856 matrix. The point clouds are stored in PCD format and their corresponding ground truth
data is stored in the PandaSetLidarGroundTruth.mat file. The file contains 3-D bounding box
information for three classes, which are car, truck, and pedestrian. The size of the data set is 5.2 GB.

Download the PandaSet data set from the given URL using the helperDownloadPandasetData
helper function, defined at the end of this example.

outputFolder = fullfile(tempdir, 'Pandaset');

lidarURL = ['https://ssd.mathworks.com/supportfiles/lidar/data/"
'Pandaset LidarData.tar.gz'];

helperDownloadPandasetData(outputFolder,lidarURL);

Depending on your internet connection, the download process can take some time. The code
suspends MATLAB® execution until the download process is complete. Alternatively, you can
download the data set to your local disk using your web browser and extract the file. If you do so,
change the outputFolder variable in the code to the location of the downloaded file. The download
file contains Lidar, Cuboids, and semanticlLabels folders, which contain the point clouds, cuboid
label information, and semantic label information respectively.

Download Pretrained Model

This example implements two variants of the complex YOLO v4 object detectors:
* complex-yolov4-pandaset — Standard complex YOLO v4 network trained on bird's-eye-view
generated from point clouds of the PandaSet data set

* tiny-complex-yolov4-pandaset — Lightweight complex YOLO v4 network trained on bird's-
eye-view images generated from point clouds of the PandaSet data set

The pretrained networks are trained on three object categories: car, truck and pedestrian.

modelName = 'tiny-complex-yolov4-pandaset';
mdl downloadPretrainedComplexYOLOv4 (modelName) ;
net mdl.net;

Load Data

Create a file datastore to load the PCD files from the specified path using the pcread function.

Lidar Object Detection Using Complex-YOLO v4 Network

path = fullfile(outputFolder, 'Lidar');
lidarData = fileDatastore(path, 'ReadFcn',@(x) pcread(x));

Load the 3-D bounding box labels of the car, truck, and pedestrian objects.

gtPath = fullfile(outputFolder, 'Cuboids', 'PandaSetLidarGroundTruth.mat"');
data = load(gtPath, 'lidarGtLabels');

Labels = timetable2table(data.lidarGtLabels);

boxLabels = Labels(:,2:end);

Display the full-view point cloud.

figure

ptCld = read(lidarData);

ax = pcshow(ptCld.Location);

set(ax, 'XLim',[-50 5071, 'YLim',6[-40 40]);
zoom(ax,2.5);

axis off;

Create Bird's-eye-view Image from Point Cloud Data

The PandaSet data consists of full-view point clouds. For this example, crop the full-view point clouds
and convert them to a bird's-eye-view images using the standard parameters. These parameters
determine the size of the input passed to the network. Selecting a smaller range of point clouds along
the x-, y-, and z-axes helps you detect objects that are closer to the origin.

xMin
XMax

-25.0;
25.0;

1-41

1 Lidar oolbox Featured Examples

yMin = 0.0;
yMax = 50.0;
zMin = -7.0;
zMax = 15.0;

Define the dimensions for the bird's-eye-view image.

bevHeight = 608;
bevWidth = 608;

Find the grid resolution.

gridw
gridH

(yMax - yMin)/bevWidth;
(xMax - xMin)/bevHeight;

Define the grid parameters.
gridParams = {{xMin,xMax,yMin,yMax,zMin, zMax}, {bevWidth,bevHeight}, {gridW,gridH}};

Convert the training data to bird's-eye-view images by using the transformPCtoBEV helper
function, attached to this example as a supporting file. You can set writeFiles to false if your
training data is already present in the outputFolder.
writeFiles = true;
if writeFiles

transformPCtoBEV(lidarData,boxLabels,gridParams,outputFolder);
end

Create Datastore Objects for Training

Create a datastore for loading the bird's-eye-view images.

dataPath = fullfile(outputFolder, 'BEVImages');
imds = imageDatastore(dataPath);

Create a datastore for loading the ground truth boxes.

labelPath = fullfile(outputFolder, 'Cuboids', 'BEVGroundTruthLabels.mat');
load(labelPath, 'processedLabels');

blds = boxLabelDatastore(processedlLabels);

Remove the data that has no labels from the training data.

[imds,blds] = removeEmptyData(imds,blds);

Split the data set into a training set for training the network and a test set for evaluating the network.
Use 60% of the data for training set and the rest for testing..

rng(0);
shuffledIndices = randperm(size(imds.Files,1));
idx = floor(0.6 * length(shuffledIndices));

Split the image datastore into training and test sets.

imdsTrain = subset(imds,shuffledIndices(1l:idx));
imdsTest = subset(imds,shuffledIndices(idx+l:end));

Split the box label datastore into training and test sets.

1-42

Lidar Object Detection Using Complex-YOLO v4 Network

bldsTrain = subset(blds,shuffledIndices(1l:idx));
bldsTest = subset(blds,shuffledIndices(idx+1l:end));

Combine the image and box label datastores.

trainData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest,bldsTest);

Use the validateInputDataComplexYOLOv4 helper function, attached to this example as a
supporting file, to detect:

* Samples with an invalid image format or that contain NaNs

* Bounding boxes containing zeros, NaNs, Infs, or are empty

* Missing or noncategorical labels.

The values of the bounding boxes must be finite and positive and cannot be NaNs. They must also be
within the image boundary with a positive height and width.

validateInputDataComplexYOLOv4(trainData);
validateInputDataComplexYOLOv4 (testData);

Preprocess Training Data

Preprocess the training data to prepare for training. The preprocessData helper function, listed at
the end of the example, applies the following operations to the input data.

* Resize the images to the network input size.

* Scale the image pixels in the range [0 1].

* Set isRotRect to true to return the rotated rectangles.

networkInputSize = [608 608 31];
isRotRect = true;

preprocessedTrainingData = transform(trainData,@(data)preprocessData(data,networkInputSize, isRotl

Read the preprocessed training data.

data = read(preprocessedTrainingData);
Display an image with the bounding boxes.

I = data{l,1};

bbox = data{l,2};

labels = data{l,3};
helperDisplayBoxes(I,bbox, labels);

1-43

1 Lidar Toolbox Featured Examples

Reset the datastore.

reset(preprocessedTrainingData);

Modify Pretrained Complex-YOLO V4 Network

The Complex-YOLO V4 network uses anchor boxes estimated from the training data to have better
initial estimate corresponding to the type of data set and to help the network learn to predict the

boxes accurately.

First, because the training images vary in size, use the transform function to preprocess the
training data and resize all the images to the same size.

Specify the number of anchors:

1-44

Lidar Object Detection Using Complex-YOLO v4 Network

+ complex-yolov4-pandaset model — Specify 9 anchors
* tiny-complex-yolov4-pandaset model — Specify 6 anchors

Use the estimateAnchorBoxes function to estimate the anchor boxes. For reproducibility, set the
random seed. Then pass the estimated anchor boxes to the configureComplexYOLOV4 function to
arrange them in the correct order for the training. Set isRotRect to false because the rotation angle
is not necessary for the bounding boxes to estimate the anchors.

rng(0)

isRotRect = false;

trainingDataForEstimation = transform(trainData,@(data)preprocessData(data,networkInputSize,isRo
numAnchors = 6;

[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingDataForEstimation,numAnchors)

anchorBoxes = 6x2

23 52
11 13
12 17
19 8
25 60
10 10

meanIoU = 0.7925

Specify the class names to use for training.

classNames = {'Car’
'"Truck'
'Pedestrain'};

Configure the pretrained model for training using the configureComplexYOLOV4 function. This
function returns a the modified layer graph, network output names, reordered anchor boxes, and
anchor box masks to select anchor boxes to use in the detected heads. Configure the detection head
of the YOLO v4 model to predict the angle regression along with bounding boxes, the objectness
score, and classification scores.

[net,networkOutputs,anchorBoxes] = configureComplexYOLOv4(net,classNames,anchorBoxes,modelName);
Specify Training Options
Specify these training options.

* Set the number of epochs to 90.

* Set the mini batch size to 8. Stable training is possible with higher learning rates when higher
mini batch size is used. Set this value depending on the memory available.

* Set the learning rate to 0.001.

* Set the warmup period to 1000 iterations. It helps in stabilizing the gradients at higher learning
rates.

* Set the L2 regularization factor to 0.001.

» Specify the penalty threshold as 0.5. Detections that overlap less than 0.5 with the ground truth
are penalized.

+ Initialize the velocity of the gradient as [], which is used by SGDM to store the velocity of the
gradients.

1-45

1 Lidar Toolbox Featured Examples

1-46

maxEpochs = 90;
miniBatchSize = 8;
learningRate = 0.001;
warmupPeriod = 1000;
12Regularization = 0.001;
penaltyThreshold = 0.5;
velocity = [];

Train Model

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA®
enabled NVIDIA® GPU. For information on supported devices, see “GPU Support by Release”
(Parallel Computing Toolbox).

Use the minibatchqueue function to split the preprocessed training data into batches with the
supporting function createBatchData, defined at the end of the example, which returns the
batched images and bounding boxes combined with the respective class IDs. For faster extraction of
the batch data for training, set the dispatchInBackground to true to use a parallel pool.

minibatchqueue automatically detects whether a GPU is available. If you do not have a GPU or do
not want to use one for training, set the QutputEnvironment parameter to cpu.

if canUseParallelPool

dispatchInBackground = true;
else
dispatchInBackground = false;

end

mbgTrain = minibatchqueue(preprocessedTrainingData,?2,
"MiniBatchSize",miniBatchSize, ...
"MiniBatchFcn",@(images,boxes,labels) createBatchData(images,boxes, labels,classNames),
"MiniBatchFormat",["SSCB",""], ...
"DispatchInBackground",dispatchInBackground, ...
"OutputCast",["","double"]);

Create the training progress plot using the supporting function
configureTrainingProgressPlotter.

Finally, specify the custom training loop. For each iteration:
* Read data from the minibatchqueue. If it has no more data, reset the minibatchqueue and

shuffle.

» Evaluate the model gradients using the d1feval and the modelGradients supporting function,
listed at the end of this example.

* Apply a weight decay factor to the gradients to regularization for more robust training.

* Determine the learning rate based on the iterations using the
piecewiselearningRateWithWarmup supporting function.

* Update the net parameters using the sgdmupdate function.
* Update the state parameters of net with the moving average.

» Display the learning rate, total loss, and the individual losses (box loss, object loss, and class loss)
for every iteration. Use these values to interpret how the respective losses change in each
iteration. For example, a sudden spike in the box loss after a few iterations implies that the
predictions contain Inf values or NaNs.

Lidar Object Detection Using Complex-YOLO v4 Network

» Update the training progress plot.

You can terminate the training if the loss saturates for a few epochs.
doTraining = false;

if doTraining
iteration = 0;

% Create subplots for the learning rate and mini-batch loss.
fig = figure;
[LossPlotter, learningRatePlotter] = configureTrainingProgressPlotter(fig);

% Custom training loop.
for epoch = l:maxEpochs

reset(mbgTrain);
shuffle(mbgTrain);

while(hasdata(mbqgTrain))
iteration = iteration + 1;

[XTrain,YTrain] = next(mbqgTrain);

% Evaluate the model gradients and loss using dlfeval and the
% modelGradients function.
[gradients,state,lossInfo] = dlfeval(@modelGradients,net,XTrain,YTrain,anchorBoxes, p

% Apply L2 regularization.
gradients = dlupdate(@(g,w) g + l2Regularization*w, gradients, net.Learnables);

% Determine the current learning rate value.
currentLR = piecewiselearningRateWithWarmup(iteration,epoch,learningRate,warmupPeriot

% Update the network learnable parameters using the SGDM optimizer.
[net,velocity] = sgdmupdate(net,gradients,velocity,currentLR);

% Update the state parameters of dlnetwork.
net.State = state;

% Display progress.

if mod(iteration,10)==
displayLossInfo(epoch,iteration,currentLR,lossInfo);

end

% Update training plot with new points.
updatePlots(lossPlotter,learningRatePlotter,iteration, currentLR,lossInfo.totallLoss);
end
end
else
net = mdl.net;
anchorBoxes = mdl.anchorBoxes;
end

To find optimal training options by sweeping through ranges of hyperparameter values, use the Deep
Network Designer (Deep Learning Toolbox) app.

1-47

1 Lidar Toolbox Featured Examples

Evaluate Model

Computer Vision Toolbox™ provides object detector evaluation functions to measure common metrics
such as average precision (evaluateDetectionAOS) for rotated rectangles. This example uses the
average orientation similarity (AOS) metric. AOS is a metric for measuring detector performance on
rotated rectangle detections. This metric provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Create a table to hold the bounding boxes, scores, and labels returned by
the detector.

results = table('Size',[0 3], ...

'VariableTypes', {'cell', 'cell', 'cell'},
'VariableNames', {'Boxes', 'Scores', 'Labels'});

)
©
)

©

% Run the detector on images in the test set and collect the results.
reset(testData)
while hasdata(testData)

% Read the datastore and get the image.

data = read(testData);

image = data{l,1};

% Run the detector.
executionEnvironment = 'auto';
[bboxes,scores,labels] = detectComplexYOLOv4(net,image,anchorBoxes, classNames,executionEnvir

% Collect the results.
tbl = table({bboxes},{scores},{labels}, 'VariableNames', {'Boxes', 'Scores', 'Labels'});
results = [results; tbl];

end

% Evaluate the object detector using the average precision metric.
metrics = evaluateDetectionAOS(results, testData)

metrics=3x5 table

A0S AP OrientationSimilarity Precision Recall
Car 0.83079 0.90904 {7339x1 double} {7339x1 double} {7339x1 doub
Truck 0.46622 0.48079 {1134x1 double} {1134x1 double} {1134x1 doub
Pedestrain 0.6626 0.72495 {3439x1 double} {3439x1 double} {3439x1 doub

Detect Objects Using Trained Complex-YOLO V4

Use the network for object detection.

% Read the datastore.
reset(testData)
data = read(testData);

% Get the image.
I = data{l,1};

% Run the detector.

executionEnvironment = 'auto';
[bboxes,scores, labels] = detectComplexYOLOv4(net,I,anchorBoxes,classNames,executionEnvironment);

1-48

Lidar Object Detection Using Complex-YOLO v4 Network

% Display the output.
figure
helperDisplayBoxes(I,bboxes, labels);

Transfer the detected boxes to a point cloud using the transferbboxToPointCloud helper
function, attached to this example as a supporting file.

lidarTestData = subset(lidarData,shuffledIndices(idx+1:end));
ptCld = read(lidarTestData);

[ptCldOut,bboxCuboid] = transferbboxToPointCloud(bboxes,gridParams,ptCld);
helperDisplayBoxes (ptCldOut,bboxCuboid, labels);

1-49

1 Lidar Toolbox Featured Examples

Supporting Functions

Model Gradients

The function modelGradients takes as input the Complex-YOLO v4 network, a mini-batch of input
data XTrain with corresponding ground truth boxes YTrain, and the specified penalty threshold. It
returns the gradients of the loss with respect to the learnable parameters in net, the corresponding
mini-batch loss information, and the state of the current batch.

The modelGradients function computes the total loss and gradients by performing these
operations.

Generate predictions from the input batch of images using the complexYOLOv4Forward method.
Collect predictions on the CPU for postprocessing.

Convert the predictions from the Complex-YOLO v4 grid cell coordinates to bounding box
coordinates to allow easy comparison with the ground truth data.

Generate targets for loss computation by using the converted predictions and ground truth data.
Generate the targets for bounding box positions (x, y, width, height, yaw), object confidence, and
class probabilities. See the supporting function generateComplexYOLOv4Targets.

Calculate the mean squared error of the predicted bounding box coordinates with target boxes
using the supporting function bbox0ffsetLoss, defined at the end of the example.

Calculate the binary cross-entropy of the predicted object confidence score with a target object
confidence score using the supporting function objectnessLoss, defined at the end of the
example.

Lidar Object Detection Using Complex-YOLO v4 Network

Calculate the binary cross-entropy of the predicted class of object with the target using the
supporting function classConfidencelLoss, defined at the end of the example.

Compute the total loss as the sum of all losses.
Compute the gradients of learnables with respect to the total loss.

function [gradients,state,info] = modelGradients(net,XTrain,YTrain,anchors,penaltyThreshold, netwt

end

inputImageSize = size(XTrain,1:2);

% Gather the ground truths in the CPU for postprocessing.
YTrain = gather(extractdata(YTrain));

% Extract the predictions from the network.
[YPredCell,state] = complexYOLOv4Forward(net,XTrain,networkOutputs,anchors);

% Gather the activations in the CPU for postprocessing and extract dlarray data.
gatheredPredictions = cellfun(@ gather,YPredCell(:,1:8), 'UniformOutput', false);
gatheredPredictions = cellfun(@ extractdata, gatheredPredictions, 'UniformOutput', false);

% Convert predictions from grid cell coordinates to box coordinates.
tiledAnchors = generateTiledAnchorsComplexYolov4(gatheredPredictions(:,2:5),anchors);
gatheredPredictions(:,2:5) = applyAnchorBox0OffsetsComplexYolov4(tiledAnchors,gatheredPredict

% Generate targets for predictions from the ground truth data.
[boxTarget,objectnessTarget, classTarget,objectMaskTarget,boxErrorScale] = generateComplexYOL!

% Compute the loss.

boxLoss = bboxOffsetLoss(YPredCell(:,[2 3 9 10 6 7]),boxTarget,objectMaskTarget,boxErrorScale
objLoss = objectnessLoss(YPredCell(:,1),objectnessTarget,objectMaskTarget);
clsLoss = classConfidencelLoss(YPredCell(:,8),classTarget,objectMaskTarget);

totalLoss = boxLoss + objLoss + clsLoss;

info.boxLoss = boxLoss;
info.objLoss = objLoss;
info.clsLoss = clsLoss;

info.totallLoss = totallLoss;

% Compute the gradients of learnables with regard to the loss.
gradients = dlgradient(totallLoss,net.Learnables);

Loss Functions

Compute the mean squared error for the bounding box position.

fun

end

ction boxLoss = bboxOffsetLoss(boxPredCell,boxDeltaTarget,boxMaskTarget,boxErrorScaleTarget)

lossX = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,1),boxDeltaTarget(:,1),boxl
lossY = sum(cellfun(@(a,b,c,d) mse(a .*c.*d,b.*c.*d),boxPredCell(:,2),boxDe1taTarget(:,2),boxr
lossW = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,3),boxDeltaTarget(:,3),boxl
lossH = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,4),boxDeltaTarget(:,4),boxl
lossYawl = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,5),boxDeltaTarget(:,5),]
lossYaw2 = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,6),boxDeltaTarget(:,6),]

boxLoss = lossX+lossY+lossW+lossH+lossYawl+lossYaw2;

Compute the binary cross-entropy loss for the class confidence score.

1-51

1 Lidar Toolbox Featured Examples

1-52

function clsLoss = classConfidencelLoss(classPredCell,classTarget,boxMaskTarget)
clsLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c, 'TargetCategories', 'independent'),clas!
end

Compute the binary cross-entropy loss for the objectness score.

function objLoss = objectnessLoss(objectnessPredCell,objectnessDeltaTarget,boxMaskTarget)
objLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c, 'TargetCategories', 'independent'),obje
end

Preprocess Data

function data = preprocessData(data,targetSize,isRotRect)
Resize the images and scale the pixels to between 0 and 1. Also scale the
corresponding bounding boxes.
for ii = 1l:size(data,l)
I = data{ii,1};
imgSize = size(I);

)
©
)

©

% Convert an input image with a single channel to three channels.
if numel(imgSize) < 3
I = repmat(I,1,1,3);
end
bboxes = data{ii,2};

I = im2single(imresize(I,targetSize(1:2)));
scale = targetSize(1l:2)./imgSize(1:2);
bboxes = bboxresize(bboxes,scale);

if ~isRotRect
bboxes = bboxes(:,1:4);
end

data(ii, 1:2) = {I,bboxes};
end
end

function [XTrain,YTrain] = createBatchData(data,groundTruthBoxes,groundTruthClasses,classNames)
% Return images combined along the batch dimension in XTrain and
% normalized bounding boxes concatenated with classIDs in YTrain.

% Concatenate images along the batch dimension.
XTrain = cat(4,data{:,1});

% Get class IDs from the class names.
classNames = repmat({categorical(classNames')},size(groundTruthClasses));
[~,classIndices] = cellfun(@(a,b)ismember(a,b),groundTruthClasses,classNames, 'UniformOutput"’

% Append the label indexes and training image size to scaled bounding boxes
% and create a single cell array of responses.
combinedResponses = cellfun(@(bbox,classid)[bbox,classid],groundTruthBoxes,classIndices, 'Uni
len = max(cellfun(@(x)size(x,1),combinedResponses));
paddedBBoxes = cellfun(@(v) padarray(v,[len-size(v,1),0],0, 'post'),combinedResponses, 'Unifori
YTrain = cat(4,paddedBBoxes{:,1});

end

Lidar Object Detection Using Complex-YOLO v4 Network

Learning Rate Schedule Function

function currentlLR = piecewiselearningRateWithWarmup(iteration,epoch,learningRate,warmupPeriod, n
% The piecewiselearningRateWithWarmup function computes the current
% learning rate based on the iteration number.

persistent warmUpEpoch;

if iteration <= warmupPeriod
% Increase the learning rate for the number of iterations in the warmup period.
currentLR = learningRate*((iteration/warmupPeriod)”4);
warmUpEpoch = epoch;

elseif iteration >= warmupPeriod && epoch < warmUpEpoch+floor(0.6*(numEpochs-warmUpEpoch))
% After the warmup period, keep the learning rate constant if the remaining number of ep«
currentLR = learningRate;

elseif epoch >= warmUpEpoch + floor(0.6*(numEpochs-warmUpEpoch)) && epoch < warmUpEpoch+floo
% If the remaining number of epochs is more than 60 percent but less
% than 90 percent, multiply the learning rate by 0.1.
currentLR = learningRate*0.1;

else
% If more than 90 percent of the epochs remain, multiply the learning
% rate by 0.01.
currentLR = learningRate*0.01;
end
end

Utility Functions

function [lossPlotter,learningRatePlotter] = configureTrainingProgressPlotter(f)
% Create the subplots to display the loss and learning rate.

figure(f);
clf
subplot(2,1,1);
ylabel('Learning Rate');
xlabel('Iteration');
learningRatePlotter = animatedline;
subplot(2,1,2);
ylabel('Total Loss');
xlabel('Iteration');
lossPlotter = animatedline;
end

function displayLossInfo(epoch,iteration,currentLR,lossInfo)
% Display loss information for each iteration.

disp("Epoch : " + epoch + " | Iteration : " + iteration + " | Learning Rate : " + currentLR -
" | Total Loss : " + double(gather(extractdata(lossInfo.totallLoss))) + ...
" | Box Loss : " + double(gather(extractdata(lossInfo.boxLoss))) + ...
" | Object Loss : " + double(gather(extractdata(lossInfo.objLoss))) + ...
" | Class Loss : " + double(gather(extractdata(lossInfo.clsLoss))));

end

function updatePlots(lossPlotter,learningRatePlotter,iteration, currentLR,totalLoss)
% Update loss and learning rate plots.
addpoints(lossPlotter,iteration,double(extractdata(gather(totalLoss))));
addpoints(learningRatePlotter, iteration,currentLR);
drawnow

1-53

1 Lidar Toolbox Featured Examples

end

function helperDisplayBoxes(obj,bboxes, labels)
% Display the boxes over the image and point cloud.
figure
if ~isa(obj, 'pointCloud")
imshow(obj)

shape = 'rectangle';
else

pcshow(obj.Location);

shape = 'cuboid';

end
showShape (shape, bboxes(labels=="'Car"',:), ...
'Color','green', 'LineWidth',0.5);hold on;
showShape (shape, bboxes(labels=="'Truck',:), ...
'Color', 'magenta', 'LineWidth',0.5);
showShape (shape, bboxes(labels=='Pedestrain',:), ...
"Color', 'yellow', 'LineWidth',0.5);
hold off;
end

function helperDownloadPandasetData(outputFolder,lidarURL)
% Download the data set from the given URL to the output folder.
lidarDataTarFile = fullfile(outputFolder, 'Pandaset LidarData.tar.gz');
if ~exist(lidarDataTarFile, 'file')
mkdir(outputFolder);
disp('Downloading PandaSet Lidar driving data (5.2 GB)...'");
websave(lidarDataTarFile, lidarURL);
untar(lidarDataTarFile,outputFolder);

end

% Extract the file.

if (~exist(fullfile(outputFolder, 'Lidar'),'dir"))...

&&(~exist(fullfile(outputFolder, 'Cuboids'), 'dir"))

untar(lidarDataTarFile,outputFolder);

end

end

References

[1] Simon, Martin, Stefan Milz, Karl Amende, and Horst-Michael Gross. "Complex-YOLO: Real-Time
3D Object Detection on Point Clouds". ArXiv:1803.06199 [Cs], 24 September 2018. https://
arxiv.org/abs/1803.06199.

[2] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "YOLOv4: Optimal Speed and
Accuracy of Object Detection". ArXiv:2004.10934 [Cs, Eess], 22 April 2020. https://arxiv.org/abs/
2004.10934.

[3] PandaSet is provided by Hesai and Scale under the CC-BY-4.0 license.

http://arxiv.org/abs/1803.06199
http://arxiv.org/abs/1803.06199
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934
https://scale.com/open-datasets/pandaset
https://creativecommons.org/licenses/by/4.0

Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar Labeler

Automate Ground Truth Labeling for Lidar Point Cloud
Semantic Segmentation Using Lidar Labeler

This example shows how to automate semantic labeling in a point cloud using a pretrained semantic
segmentation network in the Lidar Labeler app. In this example, you can use the
AutomationAlgorithm class to automate labeling in the Lidar Labeler app.

Lidar Labeler App

Good ground truth data is crucial for the development and performance evaluation of automated
driving and flight algorithms. However, creating and maintaining a diverse, high-quality, and labeled
data set requires significant effort. The Lidar Labeler app provides a framework to automate the
labeling process using the AutomationAlgorithm class. You can create a custom algorithm and use
it in the app to label your entire data set. You can also edit the results to account for challenging
scenarios missed by the algorithm.

In this example, you:

» Use a pretrained SqueezeSegV2 semantic segmentation network to segment 3-D organized point
cloud.

* Create an automation algorithm that you can use in the Lidar Labeler app to automatically
segment vegetation, ground, road, road marking, sidewalk, car, truck, other vehicle, pedestrian,
road barrier, sign, and building voxels in a point cloud using the SqueezeSegV?2 network.

Segment Point Cloud Using SqueezeSegV2 Network

Segment the point cloud using a pretrained SqueezeSegV2 network. For information on how to train
a SqueezeSegV2 network yourself, see “Lidar Point Cloud Semantic Segmentation Using
SqueezeSegV?2 Deep Learning Network” on page 1-173. This pretrained network is for organized
point clouds. For information on how to convert unorganized point clouds to organized point clouds,
see “Unorganized to Organized Conversion of Point Clouds Using Spherical Projection” on page 1-
265.

Download Pretrained Network

Download the pretrained SqueezeSegV?2 network, which has been trained on the PandaSet data set.

outputFolder = fullfile(tempdir, "Pandaset");
preTrainedMATFile = fullfile(outputFolder, "trainedSqueezeSegV2PandasetNet.mat");
preTrainedZipFile = fullfile(outputFolder, "trainedSqueezeSegV2PandasetNet.zip");

if ~exist(preTrainedMATFile,"file")
if ~exist(preTrainedZipFile,"file")
disp("Downloading pretrained model (5 MB)...");
component = "lidar";
filename = "data/trainedSqueezeSegV2PandasetNet.zip";
preTrainedZipFile = matlab.internal.examples.downloadSupportFile(component, filename);
end
unzip(preTrainedZipFile, outputFolder);
end

Download Lidar Data Set

Download the PandaSet data set from Hesai and Scale, and save the lidar data to a Pandaset folder
in a temporary folder. Note that the data set is 5.2 GB in size, and the code suspends MATLAB®

1-55

https://scale.com/open-datasets/pandaset

1 Lidar Toolbox Featured Examples

1-56

execution until the download process is complete. To avoid suspending MATLAB execution during the
download you can download the data set to your local disk, and then extract the file.

lidarDataTarFile = fullfile(outputFolder, "Pandaset LidarData.tar.gz");
if ~exist(lidarDataTarFile,"file")
disp("Downloading Pandaset Lidar driving data (5.2BG)...");
component = "lidar";
filename = "data/Pandaset LidarData.tar.gz";
lidarDataTarFile = matlab.internal.examples.downloadSupportFile(component,filename);
untar(lidarDataTarFile,outputFolder);
end

% Check if tar.gz file is downloaded, but not uncompressed.

if ~exist(fullfile(outputFolder,"Lidar"),"file")
untar(lidarDataTarFile,outputFolder);

end

Predict Segmentation Result on Point Cloud
Use the trained network to predict results on a point cloud by following these steps:

* Load the pretrained SqueezeSegV2 network into the workspace.
* Read the point cloud.

* Convert the point cloud to five-channel image using the helperPointCloudToImage on page 1-
0 function, defined in the Supporting Functions on page 1-0 section of this example.

* Use the semanticseg function to predict the semantic result on the five-channel input image.

» Display the segmentation result on the point cloud using the
helperDisplayLabelOverlaidPointCloud on page 1-0 function, defined in the Supporting
Functions on page 1-0 section of this example.

% Load the pretrained network.
outputFolder = fullfile(tempdir, "Pandaset");
load(fullfile(outputFolder, "trainedSqueezeSegV2PandasetNet.mat"), "net");

% Read the point cloud.
ptCloud = pcread(fullfile(outputFolder,"Lidar","0001.pcd"));

% Convert the point cloud to 5-channel image.
im = helperPointCloudToImage(ptCloud);

% Predict the segmentation result.
predictedResult = semanticseg(im,net);

% Display sematic segmentation result on point cloud.
helperDisplayLabelOverlaidPointCloud(im,predictedResult);
view([39.2 90.0 60])

title("Semantic Segmentation Result on Point Cloud")

Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar Labeler

Prepare Lidar Semantic Segmentation Automation Class

Construct an automation class for the lidar semantic segmentation algorithm. The class inherits from
the lidar.labeler.AutomationAlgorithm abstract base class. The base class defines properties
and signatures for methods that the app uses to configure and run the custom algorithm. The Lidar
Labeler app provides an initial automation class template. For more information, see “Create
Automation Algorithm for Labeling” on page 2-17. The LidarSemanticSegmentation class is
based on this template, and provides you with a ready-to-use automation class for semantic
segmentation in a point cloud. The comments of the class outline the basic steps required to
implement each API call.

Algorithm Properties

First, define the properties that determine the name and description of the algorithm, as well as the
directions for using the algorithm.

% Step 1: Define the required properties describing the algorithm. This
% includes Name, Description, and UserDirections.
properties(Constant)

1-57

1 Lidar Toolbox Featured Examples

Name Algorithm Name
Character vector specifying the name of the algorithm.
ame = 'Lidar Semantic Segmentation';

= o° o°

Description Algorithm Description
Character vector specifying the short description of the algorithm.
Description = 'Segment the point cloud using SqueezeSegV2 network';

o® o°

UserDirections Algorithm Usage Directions
Cell array of character vectors specifying directions for
algorithm users to follow to use the algorithm.

serDirections = {['ROI Label Definition Selection: select one of '
"the ROI definitions to be labeled'],
'Run: Press RUN to run the automation algorithm. ', .
['Review and Modify: Review automated labels over the interval ',
'using playback controls. Modify/delete/add ROIs that were not '
'satisfactorily automated at this stage. If the results are '
'satisfactory, click Accept to accept the automated labels.'],
['Accept/Cancel: If the results of automation are satisfactory, '
"click Accept to accept all automated labels and return to '
'manual labeling. If the results of automation are not '
'satisfactory, click Cancel to return to manual labeling '
'without saving the automated labels.']};

C o° o° o°

end
Custom Properties

Next, define the custom properties required for the core algorithm.

% Step 2: Define properties you want to use during the algorithm

% execution.

properties

AllCategories

AllCategories holds the default 'unlabelled', 'Vegetation',
'Ground', 'Road', 'RoadMarkings', 'SideWalk', 'Car', 'Truck',
'OtherVehicle', 'Pedestrian', 'RoadBarriers', 'Signs',
'Buildings' categorical types.

AllCategories = {'unlabelled'};

o° o o° o° of

% PretrainedNetwork
% PretrainedNetwork saves the pretrained SqueezeSegV2 network.
PretrainedNetwork

end

Function Definitions
For the third step, define the function used to check for valid data and label definitions.

The checkSignalType function checks if the signal data is supported for automation. The lidar
semantic segmentation algorithm supports signals of type PointCloud.

function isValid = checkSignalType(signalType)

% Only point cloud signal data is valid for the Lidar Vehicle

% detector algorithm.

isValid = (signalType == vision.labeler.loading.SignalType.PointCloud);
end

1-58

Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar Labeler

The checkLabelDefinition function checks if the label definition is the appropriate type for
automation. The lidar semantic segmentation algorithm requires the Voxel label type.

function isValid = checkLabelDefinition(algObj, labelDef)
% Only Voxel ROI label definitions are valid for the Lidar
% semantic segmentation algorithm.
isValid = labelDef.Type == lidarLabelType.Voxel;
if isValid
algObj.AllCategories{end+1} = labelDef.Name;
end
end

The checkSetup function checks if an ROI label definition is selected for automation.

function isReady = checkSetup(algObj)
% Is there one selected ROI Label definition to automate.
isReady = ~isempty(algObj.SelectedLabelDefinitions);

end

Execution Functions

Specify the execution functions. The initialize function populates the initial algorithm state based
on the existing labels in the app. In this example, the initialize function loads the pretrained
semantic segmentation network and saves it to the PretrainedNetwork property of the algorithm
object.

function initialize(algObj,~)
% Load the pretrained SqueezeSegV2 semantic segmentation network.
outputFolder = fullfile(tempdir, 'Pandaset');
pretrainedSqueezeSeg = load(fullfile(outputFolder, 'trainedSqueezeSegV2PandasetNet.mat'));
% Store the network in the 'PretrainedNetwork' property of this object.
alg0bj.PretrainedNetwork = pretrainedSqueezeSeg.net;

end

The run function defines the core lidar semantic segmentation algorithm of this automation class.
The algorithm calls the run function for each frame of the point cloud sequence. The function expects
the automation class to return a set of labels. You can extend the algorithm to any category the
network is trained on. For the purposes of this example, restrict the network to segment voxels of the
categories vegetation, ground, road, road markings, sidewalk, cars, trucks, other
vehicles, pedestrian, road barrier, signs, and buildings.

function autoLabels = run(algObj, pointCloud)
% Setup categorical matrix with categories including default

'unlabelled', 'Vegetation', 'Ground', 'Road', 'RoadMarkings',

'SidewWalk', 'Car', 'Truck', 'OtherVehicle', 'Pedestrian',

'RoadBarriers', and 'Signs'.

autoLabels = categorical(zeros(size(pointCloud.Location,1l),size(pointCloud.Location,2)),
0:12,alg0bj.AllCategories);

0® o o of

% Convert the input point cloud to five channel image.
I = helperPointCloudToImage(pointCloud);

% Predict the segmentation result.
predictedResult = semanticseg(I,algObj.PretrainedNetwork);
autoLabels(:) = predictedResult;

end

1-59

1 Lidar Toolbox Featured Examples

The terminate function handles any cleanup or tear-down required after the automation is done.
This algorithm does not require any cleanup, so the function is empty.

Use Lidar Semantic Segmentation Automation Class in App

To use the properties and methods implemented in the LidarSemanticSegmentation automation
algorithm class file with Lidar Labeler, you must import the algorithm into the app.

First, create the folder structure +1lidar/+1labeler under the current folder, and copy the
automation class into it.

mkdir('+lidar/+labeler');

copyfile(fullfile(matlabroot, 'examples', 'lidar', 'main', 'LidarSemanticSegmentation.m'),
'+lidar/+labeler');

Next, open the Lidar Labeler app and load the PandaSet point cloud sequence.

pointCloudDir = fullfile(outputFolder, 'Lidar');
lidarLabeler(pointCloudDir);

[Lidar

0C: 00.00C00 00: 00.20000 42 40.00000 42:40.0000C E‘ E E‘

Stat Time Current Cnd Time Max Time

In the ROI Labels tab in the left pane, click Label. Define 12 ROI labels with the names
Vegetation, Ground, Road, RoadMarkings, SideWalk, Car, Truck, OtherVehicle,
Pedestrian, RoadBarriers, Signs, and Buildings, of label type Voxel. Optionally, you can
select colors for the labels. Click OK.

1-60

Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar Labeler

|
T Y 0
: Colormap |Red to blue = O w g IR R Ego Direction % il T Fie Snap to Cluster
:Colormap Value Z Height S| et RUIYIEW Cam”: View n :::::::W o8 v G'r-:]lj:d SGE:;‘U:; Auto Align Cluster Settings 5;:"1‘?
| COALORMAP CAMERA VIEWY GRAUND CUBQID LINE
ROl Labels Scene Labels Lidar

| =
| Cabel

@ b Vegetation & 4. Define New ROl Label

& » Ground 1< Label Name

@ » Road @ Builiings

@ b RoadMarkings I =] Group
| @ » Sidewalk 2 Mone

@ b car Q Label Description (Optional)

@ r Truck 12

<@ » Othervehicle @
| <= » Pedestrian I @

<@ » RoadBarriers I @ Cancel

< b Signs =]

- B r

00: 00 00000 28:13.00000

Start Time

00 : 00.00000 28 : 13.00000

Zoom In Time Range
Current

End Time: Mz Time:

For illustration purposes, this example runs the algorithm on a subset of the PandaSet point cloud
frames. Select the time range to label. Specify the first 15 seconds of the data set by entering 0 in the
Start Time box and 15 in the End Time box. A pair of red flags appear on the range slider,
indicating the selected time interval. The app displays the signal frames from only this interval, and
applies the automation algorithm to only this interval.

=

0d:

Start Time

00.00000 00:

Current

00.00000

0c: |15.0000C 42.40.00000

(o] [0 [

Zoom In Time Range

Enc Time Max Tima

Under Select Algorithm, select Refresh list. Then, select Algorithm > Lidar Semantic
Segmentation. If you do not see this option, verify that the current working folder has a folder called
+lidar/+labeler, with a file named LidarSemanticSegmentation.min it.

1-61

1 Lidar Toolbox Featured Examples

Algorithm: P2 ==
W i
__1 Select Algorithm « - X - L
Lidar Object Tracker
Track one or more point cloud
objects using Unscented Kalman Filter.
Point Cloud Temporal Interpolator
Estimate cuboids in intermediate point cloud frames
using interpolation between cuboid ROls in key frames.
Lidar Semantic Segmentation
Segment the 3-D point
cloud using SqueezeSegV2 network.
o Add Algorithm >
& Refresh list

Click Automate. The app opens an automation session and displays directions for using the
algorithm.

[Lidar] Lidar Semantic Segmentation

@ @ :}lc—l /ﬁ ROI Label Dzfinition Selection: se ec: one of the ROI

defnitions tc be labeled

Run. Press RUN Lo ren Uie aulomalion algerithim.

Review and Maodify- Review autnmated lahels over
the intenal Lsing playback controls.
Modify/deletz/add ROls thal were not s&tisfactoriby
automated at this stage. If the results are
satisfactory, click Accept to accent the automated
labals.

Accept/Cancel: If the results of automaton are
salisleclory, click Avcepl l acceol all aulvimaled
labsls and retum to manual labeling. If the results of
autormation are not sctisfactory, cick Cancel to
raturn to manusl Isbeling without saving the
autnmated labals

Click Run. The created algorithm executes on each frame of the specified sequence and segments
points into the Vegetation, Ground, Road, RoadMarkings, SideWalk, Car, Truck,

1-62

Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar Labeler

OtherVehicle, Pedestrian, RoadBarriers, Signs, Buildings categories. After the app
completes the automation run, use the slider or arrow keys to scroll through the sequence to locate
any frames where the automation algorithm labeled points incorrectly. Use the zoom, pan, and 3-D
rotation options to view and rotate the point cloud. Manually adjust the results by adding or deleting
voxel annotations.

Supporting Functions

The helperDisplayLabelOverlaidPointCloud function overlays the segmentation result over a
3-D organized point cloud.

function helperDisplayLabelOverlaidPointCloud(I,predictedResult)

% helperDisplaylLabelOverlaidPointCloud Overlay labels over point cloud object.
helperDisplayLabelOverlaidPointCloud(I,predictedResult)
displays the overlaid pointCloud object. I is the 5 channels organized
input image. predictedResult contains pixel labels.
ptCloud = pointCloud(I(:,:,1:3),Intensity = I(:,:,4));
cmap = helperPandasetColorMap;

o® o° of

B=...

labeloverlay(uint8(ptCloud.Intensity),predictedResult,Colormap = cmap,Transparency = 0.4
pc = pointCloud(ptCloud.Location,Color = B);
ax = pcshow(pc);

set(ax,XLim = [-70 70],YLim = [-70 701)
zoom(ax,3.5)
end

The helperPandasetColorMap function defines the colormap used by the lidar data set.

1-63

1 Lidar oolbox Featured Examples

function cmap = helperPandasetColorMap

cmap = [[30 30 30]; % Unlabeled
[0 255 0]; % Vegetation
[255 150 255]; % Ground
[237 117 321; % Road
[255 0 0]; % Road Markings
[90 30 150]; % Sidewalk
[255 255 30]; % Car
[245 150 100]; % Truck
[150 60 301; % Other Vehicle
[255 255 01; % Pedestrian
[0 200 2551; % Road Barriers
[170 100 150]; % Signs
[255 0 255]11; % Building

cmap = cmap./255;
end

The helperPointCloudToImage function converts the point cloud to a five-channel image.

function image = helperPointCloudToImage(ptcloud)
% helperPointCloudToImage converts the point cloud to five-channel image

image = ptcloud.Location;

image(:,:,4) = ptcloud.Intensity;

rangeData = iComputeRangeData(image(:,:,1),image(:,:,2),image(:,:,3));
image(:,:,5) = rangeData;

index = isnan(image);

image(index) = 0;

end

function rangeData = iComputeRangeData(xChannel,yChannel, zChannel)

rangeData = sqrt(xChannel.*xChannel+yChannel.*yChannel+zChannel.*zChannel);
end

1-64

Create, Process, and Export Digital Surface Model from Lidar Data

Create, Process, and Export Digital Surface Model from Lidar

Data

This example shows how to process aerial lidar data received from an airborne lidar system into a
GeoTIFF file. Import a LAZ file containing aerial lidar data, create a spatially referenced digital
surface model (DSM) from the data, crop the DSM to an area of interest, and export the cropped
DSM to a GeoTIFF file.

When you export a DSM to a GeoTIFF file, you also export the projected coordinate reference system
(CRS) for the data. Projected CRSs associate x- and y-coordinates to locations on Earth. Specifying
the projected CRS is important when creating a model because the same coordinates in different
projected CRSs can refer to different locations.

Read Aerial Lidar Data

Read 3-D point cloud data for an area near Tuscaloosa, Alabama from a LAZ file [1 on page 1-0].
The area includes roads, trees, and buildings.

lazFileName = fullfile(toolboxdir("lidar"),"lidardata","las", "aeriallLidarData.laz");
lasReader = lasFileReader(lazFileName);
ptCloud = readPointCloud(lasReader);

Display the data.

figure
pcshow(ptCloud.Location)

1-65

1 Lidar Toolbox Featured Examples

Create DSM

A DSM includes the elevations of ground points, the elevations of natural features such as trees, and
the elevations of artificial features such as buildings. Create a DSM from the point cloud data by
using the pc2dem function. Use the maximum point from each element of the point cloud, which
corresponds to the first return pulse of the lidar data, by specifying the CornerFillMethod as
"max". The function returns an array of elevation values and the x- and y-limits of the data.

gridRes 1;

[Z,x1limits,ylimits] = pc2dem(ptCloud,gridRes,CornerFillMethod="max");

Spatially Reference DSM

Spatially reference the DSM by creating a map reference object.

R

R

maprefpostings(xlimits,ylimits,size(Z))

MapPostingsReference with properties:

XWorldLimits:
YWorldLimits:
RasterSize:
RasterInterpretation:
ColumnsStartFrom:
RowsStartFrom:
SampleSpacingInWorldX:
SampleSpacingInWorldY:
RasterExtentInWorldX:
RasterExtentInWorldY:
XIntrinsiclLimits:
YIntrinsiclLimits:
TransformationType:
CoordinateSystemType:
ProjectedCRS:

[429745.02 430146.02]
[3679830.75 3680114.75]
[285 402]

'postings’

'south’

'west'

1

1

401

284

[1 402]

[1 285]

'rectilinear’

'planar’

[]

The reference object contains information such as the limits, the distance between the points, and the
directions of the columns and rows. By default, the reference object assumes that columns start from
the south and rows start from the west. These default values are consistent with the output of the
pc2dem function, which creates the elevation array such that the first element represents the

southwesternmost point.

The ProjectedCRS property of the reference object is empty, which means the DSM is not
associated with a projected CRS. Read the CRS from the LAZ file and update the ProjectedCRS

property.

p = readCRS(lasReader);
R.ProjectedCRS = p;
disp(p)

projcrs with properties:
Name:

GeographicCRS:
ProjectionMethod:

1-66

"NAD83 / UTM zone 16N"
[1x1 geocrs]
"Transverse Mercator"

Create, Process, and Export Digital Surface Model from Lidar Data

LengthUnit: "meter"
ProjectionParameters: [1x1 map.crs.ProjectionParameters]

A projected CRS consists of a geographic CRS and several parameters that are used to transform
coordinates to and from the geographic CRS. A geographic CRS consists of a datum (including a
reference ellipsoid), a prime meridian, and an angular unit of measurement. View the geographic
CRS and its reference ellipsoid.

g = p.GeographicCRS

g:
geocrs with properties:
Name: "NAD83"
Datum: "North American Datum 1983"
Spheroid: [1x1 referenceEllipsoid]
PrimeMeridian: 0
AngleUnit: "degree"
g.Spheroid
ans =

referenceEllipsoid with defining properties:

Code: 7019
Name: 'GRS 1980'
LengthUnit: 'meter’
SemimajorAxis: 6378137
SemiminorAxis: 6356752.31414036
InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158

and additional properties:

Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

Display the spatially referenced DSM as an overhead surface by using the mapshow function.
figure
mapshow(Z,R,DisplayType="surface")

axis image
title("Digital Surface Model (DSM) from Aerial Lidar Data")

1-67

1 Lidar Toolbox Featured Examples

1-68

. 1p¢ Digital Surface Model (DSM) from Aerial Lidar Data

3.6801

3.68005

3.68

3.67995

3.6799

3.67985

42975 4298 42085 4299 4.2995 4.3 43005 4.301
5
w10

Crop DSM to Region of Interest

Represent the DSM region as a polygon by using a mappolyshape object. Update the
ProjectedCRS property to match the CRS of the DSM.

bboxx = xlimits([1 1 2 2 1]);

bboxy = ylimits([1 2 2 1 1]);
bboxshape = mappolyshape(bboxx,bboxy);
bboxshape.ProjectedCRS = p;

View the region using satellite imagery. You can visually confirm that the satellite imagery aligns with
the DSM visualization created using the mapshow function.

regioncolors = lines(2);
geoplot(bboxshape,
EdgeColor=regioncolors(1,:),
FaceAlpha=0.2,
LineWidth=2, ...
DisplayName="Aerial Lidar Data Region")
hold on
geobasemap satellite
legend

Create, Process, and Export Digital Surface Model from Lidar Data

F

[JAerial Lidar Data Region

33°1525"N

Latitude

33"1520"N

B7°45"15"W B7°4510"W 87°4505"W BT 45'W
Longitude

Select and display a region of interest. To use a predefined region that is bounded by roads on the
east, north, and west, specify interactivelySelectPoints as false. Alternatively, you can
interactively select four points that define a region by specifying interactivelySelectPoints as
true.

interactivelySelectPoints = false;

if interactivelySelectPoints
[cropbboxlat, cropbboxlon] = ginput(4); %#ok<UNRCH>

else
cropbboxlat
cropbboxlon

[33.2571550; 33.2551982; 33.2551982; 33.2571125];
[-87.7530648; -87.7530139; -87.7509086; -87.7509086];

end

cropbboxlat(end+1l) = cropbboxlat(1l);
cropbboxlon(end+1) = cropbboxlon(1);

cropbboxshape = geopolyshape(cropbboxlat, cropbboxlon);

geoplot(cropbboxshape,
EdgeColor=regioncolors(2,:),
FaceAlpha=0.2,
LineWidth=2,
DisplayName="Selected Region of Interest")

1-69

1 Lidar Toolbox Featured Examples

F
[lAerial Lidar Data Region
a
[Iselected Region of Interest
3

33°1525"N

Latitude

33"15%20"N

B7°45'15"W B7°4510"W 87°45'05"W B7°45'W
Longitude

Transform the latitude and longitude limit coordinates for the region to x- and y-limit coordinates.
The geographic CRS underlying the satellite basemap is WGS84, while the geographic CRS
underlying the DSM data is NAD83. NAD83 and WGS84 are similar, but not identical. As a result,
there can be discrepancies in coordinates between the satellite imagery and DSM.

[cropbboxx, cropbboxy] = projfwd(p,cropbboxlat(:),cropbboxlon(:));

Create the crop limits by finding the bounds of the x- and y-coordinates.

[cropxlimmin, cropxlimmax] = bounds(cropbboxx);

cropxlimits = [cropxlimmin cropxlimmax];

[cropylimmin, cropylimmax] = bounds(cropbboxy);

cropylimits = [cropylimmin cropylimmax];

Create a new spatially referenced DSM that contains data within the region of interest.
[Zcrop,Rcrop] = mapcrop(Z,R,cropxlimits,cropylimits);

Export DSM to GeoTIFF File

Write the cropped DSM to a GeoTIFF file called lidardsm.tif. Specify the projected CRS by using
the CoordRefSysCode argument. The metadata for the LAZ file [1 on page 1-0] indicates the
projected CRS is UTM Zone 16N, specified by EPSG authority code 26916.

datafile "lidardsm.tif";
epsgCode = 26916;
geotiffwrite(datafile, Zcrop,Rcrop,CoordRefSysCode=epsgCode)

1-70

Create, Process, and Export Digital Surface Model from Lidar Data

You can also find the authority code by displaying the well-known text (WKT) string for the projected
CRS. For this WKT, the authority code is in the last line.

wktstring(p,"Format","formatted")

ans =
"PROJCRS["NAD83 / UTM zone 16N",
BASEGEOGCRS["NAD83",

DATUM["North American Datum 1983",

ELLIPSOID["GRS 1980",6378137,298.257222101,
LENGTHUNIT["metre",1]11,

PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.017453292519943311,

ID["EPSG",4269]1,

CONVERSION["UTM zone 16N",

METHOD["Transverse Mercator",
ID["EPSG",9807]1,

PARAMETER["Latitude of natural origin",0,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]1],

PARAMETER["Longitude of natural origin",-87,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]1,

PARAMETER["Scale factor at natural origin",0.9996,
SCALEUNIT["unity",1],

ID["EPSG",8805]1],

PARAMETER["False easting",500000,
LENGTHUNIT["metre", 1],

ID["EPSG",8806]],

PARAMETER["False northing",0,
LENGTHUNIT["metre", 1],
ID["EPSG",8807]11,

CS[Cartesian, 2],

AXIS["easting", east,
ORDER[1],
LENGTHUNIT["metre",11],

AXIS["northing",north,

ORDER[2],
LENGTHUNIT["metre",11],
ID["EPSG",26916]11"

One way to validate the GeoTIFF file is to return information about the file as a RasterInfo object.
For example, verify that the projected CRS is in the file by querying the
CoordinateReferenceSystem property of the RasterInfo object.

info = georasterinfo(datafile);
info.CoordinateReferenceSystem

ans =
projcrs with properties:

Name: "NAD83 / UTM zone 16N"
GeographicCRS: [1x1 geocrs]
ProjectionMethod: "Transverse Mercator"
LengthUnit: "meter"
ProjectionParameters: [1x1 map.crs.ProjectionParameters]

1-71

1 Lidar Toolbox Featured Examples

1-72

Another way to validate the GeoTIFF file is by displaying it. Read the new DSM as an array and a
reference object by using the readgeoraster function. Then, display the DSM.

[Z2,R2] = readgeoraster(datafile);

figure

mapshow(Z2,R2,DisplayType="surface")

axis image

title("Cropped DSM from Aerial Lidar Data")

.. 1pCropped DSM from Aerial Lidar Data

3.68004

3.68002

3.68

3.67998

3.67996

3.67994

3.67992

3.6799

3.67988

3.67986

3.67984

4.299 4.2995 43 4.3005
% 10°

You can use the GeoTIFF file in other applications that import GIS data. For example, RoadRunner
enables you to add elevation data from GeoTIFF files to scenes.

References

[1] OpenTopography. “Tuscaloosa, AL: Seasonal Inundation Dynamics And Invertebrate
Communities,” 2011. https://doi.org/10.5069/G9SF2T3K.

https://www.mathworks.com/products/roadrunner.html
https://doi.org/10.5069/G9SF2T3K

Multi-Lidar Calibration

Multi-Lidar Calibration

This example shows how to calibrate multiple 3-D lidar sensors mounted on a vehicle to estimate a
relative transformation between them. Traditional methods, such as marker-based registration, are
difficult when the lidar sensors have a negligible overlap between their fields of view (FOVs). The
calibration also becomes more difficult as the number of lidar sensors increases. This example
demonstrates the use of the trajectories of individual lidar sensors to estimate the transformation
between them. This method of calibration is also known as hand-eye calibration.

The use of multiple lidar sensors on an autonomous vehicle helps to remove blind spots, increases
redundancy, and enables high-resolution map creation. To extract meaningful information from
multiple lidar sensors, you can fuse the data using the transformation between them. Fusing multiple
lidars can be challenging because of variations in resolution between different lidar sensors. This
example also demonstrates how to create a high-resolution point cloud map by fusing the point clouds
from multiple lidar sensors.

This example uses synthetic input data generated using the Unreal Engine® by Epic Games®. The
figure shows the configuration of the sensors mounted on the vehicle.

Top View of Ege Vehicle

Load Vehicle Trajectory

The generated data simulates a vehicle on a predefined trajectory in an urban road setting. For
details on how to interactively select a sequence of waypoints from a scene and generate vehicle
trajectories, see the “Select Waypoints for Unreal Engine Simulation” (Automated Driving Toolbox)
example. Use the helperShowSceneImage helper function to visualize the path the vehicle follows
while collecting the data.

% Load reference path for recorded drive segment

xData = load('refPosesX.mat');
yData = load('refPosesY.mat');
yawData = load('refPosesT.mat');

% Set up workspace variables used by model

refPosesX = xData.refPosesX;
refPosesY = yData.refPosesY;
refPosesT = yawData.refPosesT;
if ~ispc

error(['3D Simulation is only supported on Microsoft',
char(174),' Windows',char(174),'."'1);
end

1-73

1 Lidar Toolbox Featured Examples

sceneName = "VirtualMCity";
hScene = figure;
helperShowSceneImage(sceneName)

hold on
scatter(refPosesX(:,2),refPosesY(:,2),7, 'filled")

% Adjust axes limits

x1lim([-50 100])
ylim([-50 751)

VirtualMCity

60

o

40

e e
1"""-—a-—.—..—.mn-__,.._..,,,__.

=40

-50 0 50 100
X (m)

Record Synthetic Data

The MultiLidarSimulation Simulink model is configured for the Virtual Mcity (Automated Driving
Toolbox) 3-D environment using the Simulation 3D Scene Configuration (Automated Driving Toolbox)

1-74

Multi-Lidar Calibration

block. A vehicle of type box truck is configured in the scene using the Simulation 3D Vehicle with
Ground Following (Automated Driving Toolbox) block. The vehicle has two lidar sensors mounted on it
using the Simulation 3D Lidar (Automated Driving Toolbox) block. The two lidars are mounted such
that one lidar sensor is mounted at the front bumper and the other at the rear bumper. The mounting
position of the lidar sensor can be adjusted using the Mounting tab in the simulation block.

modelName = 'MultilLidarSimulation';
open_system(modelName)

| Multi Lidar Calibration .

SimulinkVehicle and sensors

Record Front Lidar

point cloud

h

P lidarLocation

L Q) e

Simulation 30 Scene Configuration

Orientation

Record Back Lidar

Foint cloud pont cloud

. |
| W]

(=) Location idart ocation
W

3

h

Orientation >|I

refPosesX X

refPosesy » Y

; o
[e
O

HHH
|

refPosesT W aw

Copyright 2021 The MathWorks Inc.

The model records synthetic lidar data and saves it to the workspace.

% Update simulation stop time to end when reference path is completed
simStopTime = refPosesX(end,1);
set param(gcs,StopTime=num2str(simStopTime));

% Run the simulation
simOut = sim(modelName);

Extract Lidar Odometry

There are several simultaneous localization and mapping (SLAM) methods that estimate the
odometry from lidar data by registering successive point cloud frames. You can further optimize the
relative transform between the frames through loop closure detection. For more details on how to

1-75

1 Lidar Toolbox Featured Examples

1-76

generate a motion trajectory using the NDT-based registration method, see the “Design Lidar SLAM
Algorithm Using Unreal Engine Simulation Environment” (Automated Driving Toolbox) example. For
this example, use the helperExtractLidarOdometry helper function to generate the motion
trajectory as a pcviewset object to the simulation output simOut.

% Front lidar translation and rotation
frontLidarTranslations = simOut.lidarLocationl.signals.values;
frontLidarRotations = simOut.lidarRotationl.signals.values;

% Back lidar translation and rotation
backLidarTranslations = simOut.lidarLocation2.signals.values;
backLidarRotations = simQOut.lidarRotation2.signals.values;

% Extract point clouds from the simulation output
[frontLidarPtCloudArr,backLidarPtCloudArr] = helperExtractPointCloud(simQut);

% Extract lidar motion trajectories

frontLidarVset = helperExtractLidarOdometry(frontLidarTranslations, frontLidarRotations,
frontLidarPtCloudArr);

backLidarVset = helperExtractLidarOdometry(backLidarTranslations,backLidarRotations,
backLidarPtCloudArr);

The helperVisualizelLidarOdometry helper function visualizes the accumulated point cloud map
with the motion trajectory overlaid on it.

% Extract absolute poses of lidar sensor

frontLidarAbsPos = frontLidarVset.Views.AbsolutePose;
backLidarAbsPos = backLidarVset.Views.AbsolutePose;

% Visualize front lidar point cloud map and trajectory
figure

plot(frontLidarVset)

hold on

plot(backLidarVset)

legend({'Front Lidar Trajectory', 'Back Lidar Trajectory'})
title("Lidar Trajectory")
view(2)

Multi-Lidar Calibration

Lidar Trajectory

60T I 'FrﬂntLidarTrajec:tur;.r

s—a_ Back Lidar Trajectory

401

2007

=40

—E.D L i i i
-90 0 50

The trajectories of the two lidar sensors appear to be shifted by 180 degrees. This is because the lidar
sensors are configured facing in opposite directions in the Simulink model.

Align Lidar Trajectory

General registration-based methods, using point clouds, often fail to calibrate lidar sensors with
nonoverlapping or negligible-overlap fields of view because they lack of sufficient corresponding
features. To overcome this challenge, use the motion of the vehicle for registration. Because of the
rigid nature of the vehicle and the sensors mounted on it, the motion of each sensor correlates to the
relative transformation between the sensors. To extract this relative transformation, formulate the
solution to align lidar trajectory as a hand-eye calibration that involves solving the equation AX = XB,
where A and B are successive poses of the two sensors, A and B. You can further decompose this
equation into its rotation and translation components.

Rk

b
a _ pda k
ak_l*Rb - Rb*Rbk

-1

ak
Ry _

a
CEtB + ik = Ry*tg
ak ak
Ra 1 tag 4
are the rotation and translation components of sensorA relative to sensor B. This figure shows the
relationship between the relative transformation and the successive poses between the two sensors.

are the rotation and translation components of sensorAfrom timestamp k — 1 to k. R}, tf

b
Tg’lj _q Tb’]z _ , is total transformation of sensors A ,B and T} is the relative transformation.

1-77

1 Lidar Toolbox Featured Examples

1-78

Frame k-1 Frame k

C T T T T T TTTTTTTTTTTTTTTTTTTTT g
| : I
| a

I k—1 I
| e |
: . '
Lidar1 I I	
! l l	
! I I	

| i |
: I T'bk—l Lidar 2 I
l Liclar 2 by |
|
| |

Transformation between two consecutive frames

There are multiple ways to solve the equations for rotation and translation[1 on page 1-0]. Use the
helperEstimateHandEyeTransformation helper function attached as a supporting file to this
example, to estimate the initial transformation between the two lidar sensors as a rigid3d object. To
extract the rotation component of the equation, the function converts the rotation matrices into a
quaternion form restructured as a linear system. The function finds the closed-form solution of this
linear system using singular value decomposition[2 on page 1-0 1.

tformInit = helperEstimateHandEyeTransformation(backLidarAbsPos, frontLidarAbsPos);

Transformation Refinement

To further refine the transformation, use a registration-based method. Input the translation of each
lidar sensor from their respective trajectories to the registration. Use the
helperExtractPosFromTform helper function to convert the trajectories of the sensors into
showPointCloud objects. For registration, use the pcregistericp function with the calculated
rotation component tformInit as your initial transformation.

% Extract the translation of each sensor in the form of a point cloud object
frontLidarTrans = helperExtractPosFromTform(frontLidarAbsPos);
backLidarTrans = helperExtractPosFromTform(backLidarAbsPos);

% Register the trajectories of the two sensors
tformRefine = pcregistericp(backLidarTrans, frontLidarTrans,
'InitialTransform',tformInit,Metric="'pointToPoint');

Note that the accuracy of the calibration depends on how accurately you estimate the motion of each
sensor. To simplify the computation, the motion estimate for the vehicle assumes the ground plane is
flat. Because of this assumption, the estimation loses one degree of freedom along the Z-axis. You can
estimate the transformation along the Z-axis by using the ground plane detection method[3 on page

Multi-Lidar Calibration

1-0 1. Use the pcfitplane function to estimate the ground plane from the point clouds of the two
lidar sensors. The function estimates the height of each sensor from the detected ground planes of
the two lidar sensors. Use the helperExtractPointCloud helper function to extract a
pointCloud object array from the simulation output simOut.

% Maximum allowed distance between the ground plane and inliers
maxDist = 0.8;

% Reference vector for ground plane
refVecctor = [0 0 1];

% Fit plane on the a single point cloud frame
frame = 2;

frontPtCloud = frontLidarPtCloudArr(2);
backPtCloud = backLidarPtCloudArr(2);

[~,frontLidarInliers,~] = pcfitplane(frontPtCloud,maxDist, refVecctor);
[~,backLidarInliers,~] = pcfitplane(backPtCloud,maxDist, refVecctor);

% Extract relative translation between Z-axis
frontGroundPlane = select(frontPtCloud, frontLidarInliers);
backGroundPlane = select(backPtCloud,backLidarInliers);

frontGroundPts = frontGroundPlane.Location;
backGroundPlane = backGroundPlane.Location;

% Compute the difference between mean values of the extracted ground planes
zRel = mean(frontGroundPts(:,3)) - mean(backGroundPlane(:,3));

Update the initial transformation with the estimated relative translation
in the Z-axis
tformRefine.Translation(3) = zRel;

)
“©
)

“©

Fuse point cloud

After obtaining the relative transformation between the two lidar sensors, fuse the point clouds from
the two lidar sensors. Then fuse the fused point cloud sequentially to create a point cloud map of the
data from the two lidar sensors. This figure shows the point cloud fusion method of point cloud map
creation.

1-79

1 Lidar Toolbox Featured Examples

tformRefine

tformRefine

\YE]e]

Creation

Use the helperVisualizedFusedPtCloud helper function to fuse the point clouds from the two
lidar sensors, overlaid with the fused trajectory after calibration. From the fused point cloud map,
you can visually infer the accuracy of the calibration.

helperVisualizedFusedPtCloud(backLidarVset, frontLidarVset,tformRefine)

1-80

Multi-Lidar Calibration

Lidar Point Cloud Map Building
o

1

:!:::'1, "/'
e

238 F: ,.ﬂ"‘"

)
Front Lidar

Back Lidar 4
100
X (m)

Results

The accuracy of the calibration is measured with respect to the ground truth transformation obtained
from the mounting location of the sensors. The Sport Utility Vehicle (Vehicle Dynamics Blockset)
documentation page provides the details of the mounting position of the two lidar sensors. The
relative transformation between the two lidar sensors is loaded from the gTruth.mat file.

gt = load('gTruth.mat');
tformGt = gt.gTruth;

% Compute the translation error along the x-, y-, and z-axes
transError = tformRefine.Translation - tformGt.Translation;
fprintf("Translation error along x in meters: %d",transError(l));

Translation error along x in meters: 8.913606e-03
fprintf("Translation error along y in meters: %d",transError(2));
Translation error along y in meters: 6.720094e-03
fprintf("Translation error along z in meters: %d",transError(3));
Translation error along z in meters: 2.294692e-02

% Compute the translation error along the x-, y-, and z-axes
rest = rad2deg(rotm2eul(tformRefine.Rotation));

rGt = rad2deg(rotm2eul(tformGt.Rotation));

rotError = rEst - rGt;

fprintf("Rotation error along x in degrees: %d",rotError(3));

1-81

1 Lidar Toolbox Featured Examples

1-82

Rotation error along x in degrees: -4.509040e-04

fprintf("Rotation error along y in degrees: %d",rotError(2));

Rotation error along y in degrees: 2.201822e-05

fprintf("Rotation error along z in degrees: %d",rotError(l));

Rotation error along z in degrees: 2.545250e-02

Supporting Functions

helperExtractPointCloud extracts an array of pointCloud objects from a simulation output.

function [ptCloudArrl,ptCloudArr2] = helperExtractPointCloud(simOut)

% Extract signal
ptCloudDatal simOut.ptCloudDatal.signals.values;
ptCloudData2 simOut.ptCloudData2.signals.values;

numFrames = size(ptCloudDatal,4);

% Create a pointCloud array
ptCloudArrl = pointCloud.empty(0,numFrames);
ptCloudArr2 = pointCloud.empty(0,numFrames);

for n = 1l:size(ptCloudDatal,4)
ptCloudArrl(n) = pointCloud(ptCloudDatal(:,:,:,n));
ptCloudArr2(n) = pointCloud(ptCloudData2(:,:,:,n));
end
end

helperExtractLidarOdometry extracts the total transformation of the sensors.

function vSet = helperExtractLidarOdometry(location,theta,ptCloud)

numFrames = size(location, 3);
vSet = pcviewset;
tformRigidAbs = rigid3d;
yaw theta(:,3,1);
rot [cos(yaw) sin(yaw) O;
-sin(yaw) cos(yaw) 0; ...
0 0 11;

% Use first frame as reference frame
tformOrigin = rigid3d(rot,location(:,:,1));
vSet = addView(vSet,1,tformRigidAbs,PointCloud=ptCloud(1));
for i = 2:numFrames

yawCurr = theta(:,3,1);

rotatCurr = [cos(yawCurr) sin(yawCurr) 0; .

-sin(yawCurr) cos(yawCurr) 0; ...
1];

0 0
transCurr = location(:,:,1i);
tformCurr = rigid3d(rotatCurr,transCurr);

% Absolute pose
tformRigidAbs(i) = rigid3d(tformCurr.T * tformOrigin.invert.T);
vSet = addView(vSet,i,tformRigidAbs(i),PointCloud=ptCloud(i));

Multi-Lidar Calibration

% Transform between frame k-1 and k
relPose = rigid3d(tformRigidAbs(i-1).T * tformRigidAbs(i).invert.T);
vSet = addConnection(vSet,i-1,i,relPose);

end

end

helperVisualizedFusedPtCloud visualizes a point cloud map from the fusion of two lidar
Sensors.

function helperVisualizedFusedPtCloud(movingVset,baseVset,tform)
hFig = figure(Name='Point Cloud Fusion',

NumberTitle='off');
ax = axes(Parent = hFig);

% Create a scatter object for map points

scatterPtCloudBase = scatter3(ax,NaN,NaN,NaN,
2, 'magenta', 'filled');

hold(ax, 'on');

scatterPtCloudMoving = scatter3(ax,NaN,NaN,NaN,
2,'green','filled');

scatterMap = scatter3(ax,NaN,NaN,NaN,
5,'filled");

% Create a scatter object for relative positions

positionMarkerSize = 5;

scatterTrajectoryBase = scatter3(ax,NaN,NaN,NaN,
positionMarkerSize, 'magenta’', 'filled');

scatterTrajectoryMoving = scatter3(ax,NaN,NaN,NaN,
positionMarkerSize, 'green', 'filled"');

hold(ax, 'off');

% Set background color
ax.Color = 'k';
ax.Parent.Color = 'k';

% Set labels
xlabel(ax, 'X (m)"')
ylabel(ax,'Y (m)")
% Set grid colors
ax.GridColor = 'w';
ax.XColor 'w';
ax.YColor

W

% Set aspect ratio for axes

axis(ax, 'equal')

xlim(ax, [-30 100]);

ylim(ax, [-80 40]);

title(ax, 'Lidar Point Cloud Map Building',Color=[1 1 1])

ptCloudsMoving = movingVset.Views.PointCloud;
absPoseMoving = movingVset.Views.AbsolutePose;

ptCloudsBase = baseVset.Views.PointCloud;
absPoseBase = baseVset.Views.AbsolutePose;

numFrames = numel(ptCloudsMoving);

1-83

1 Lidar Toolbox Featured Examples

1-84

% Extract relative positions from the absolute poses

relPositionsMoving = arrayfun(@(poseTform) transformPointsForward(poseTform,
[0 0 0]),absPoseMoving,UniformQutput=~false);

relPositionsMoving = vertcat(relPositionsMoving{:});

relPositionsBase = arrayfun(@(poseTform) transformPointsForward(poseTform,
[0 0 0]),absPoseBase,UniformQutput=false);
relPositionsBase = vertcat(relPositionsBase{:});

set(scatterTrajectoryBase, 'XData', relPositionsMoving(1,1), 'YData',
relPositionsMoving(1,2), 'ZData', relPositionsMoving(1,3));

set(scatterTrajectoryMoving, 'XData', relPositionsBase(1,1), 'YData',
relPositionsBase(1,2), 'ZData',relPositionsBase(1,3));

% Set legend
legend(ax, {'Front Lidar', 'Back Lidar'},
Location='southwest',TextColor="'w")
skipFrames = 5;
for n = 2:skipFrames:numFrames
pcl = pctransform(removeInvalidPoints(ptCloudsMoving(n)),absPoseMoving(n));
pc2 = pctransform(removeInvalidPoints(ptCloudsBase(n)),absPoseBase(n));
% Transform moving point cloud to the base
pcl = pctransform(pcl,tform);

% Create a point cloud map and merge point clouds from the sensors
baseMap = pcalign(ptCloudsBase(1l:n),absPoseBase(1l:n),1);
movingMap = pcalign(ptCloudsMoving(1l:n),absPoseMoving(1l:n),1);

movingMap = pctransform(movingMap,tform);
map = pcmerge(baseMap,movingMap,0.1);

% Transform the position of the moving sensor to the base
xyzTransformed = [relPositionsMoving(1l:n,1),relPositionsMoving(1:n,2),
relPositionsMoving(1l:n,3)]*tform.Rotation + tform.Translation;

% Plot current point cloud of individual sensor with respect to the ego

% vehicle

set(scatterPtCloudBase, 'XData',pc2.Location(:,1), 'YData',
pc2.Location(:,2), 'ZData',pc2.Location(:,3));

set(scatterPtCloudMoving, 'XData',pcl.Location(:,1), 'YData',
pcl.Location(:,2), 'ZData',pcl.Location(:,3))

% Plot fused point cloud map
set(scatterMap, 'XData', map.Location(:,1), 'YData',

map.Location(:,2),'ZData', map.Location(:,3), 'CData', map.Location(:,3));

% Plot trajectory
set(scatterTrajectoryBase, 'XData', relPositionsBase(1l:n,1), 'YData',
relPositionsBase(1:n,2), 'ZData', relPositionsBase(1l:n,3));
set(scatterTrajectoryMoving, 'XData',xyzTransformed(:,1), 'YData',

xyzTransformed(:,2), 'ZData',xyzTransformed(:,3));

% Draw ego vehicle assuming the dimensions of a sports utility vehicle
eul = rotm2eul(absPoseBase(n).Rotation');

theta = rad2deg(eul);

t = xyzTransformed(end,:) + [4.774 0 0]/2*(absPoseBase(n).Rotation);
pos = [t 4.774 2.167 1.774 theta(2) theta(3) theta(l)];

showShape('cuboid',pos,Color="'yellow',Parent=ax,0pacity=0.9);

Multi-Lidar Calibration

view(ax,2)
drawnow limitrate
end
end

helperExtractPosFromTform converts translation from a pose to a pointCloud object.

function ptCloud = helperExtractPosFromTform(pose)
numFrames = numel(pose);
location = zeros(numFrames,3);
for i = 1l:numFrames
location(i,:) = pose(i).Translation;

end

ptCloud = pointCloud(location);
end

References

[1] Shah, Mili, Roger D. Eastman, and Tsai Hong. ‘An Overview of Robot-Sensor Calibration Methods
for Evaluation of Perception Systems’. In Proceedings of the Workshop on Performance Metrics for
Intelligent Systems - PerMIS ’12, 15. College Park, Maryland: ACM Press, 2012. https://doi.org/
10.1145/2393091.2393095.

[2] Chou, Jack C. K., and M. Kamel. "Finding the Position and Orientation of a Sensor on a Robot
Manipulator Using Quaternions". The International Journal of Robotics Research 10, no. 3 (June
1991): 240-54. https://doi.org/10.1177/027836499101000305.

[3] Jiao, Jianhao, Yang Yu, Qinghai Liao, Haoyang Ye, Rui Fan, and Ming Liu. ‘Automatic Calibration of
Multiple 3D LiDARs in Urban Environments’. In 2019 IEEE/RS] International Conference on

Intelligent Robots and Systems (IROS), 15-20. Macau, China: IEEE, 2019. https://doi.org/10.1109/
[ROS40897.2019.8967797.

Copyright 2021 The MathWorks, Inc.

See Also

Apps
Lidar Camera Calibrator

1-85

https://doi.org/10.1145/2393091.2393095
https://doi.org/10.1145/2393091.2393095
https://doi.org/10.1177/027836499101000305
https://doi.org/10.1109/IROS40897.2019.8967797
https://doi.org/10.1109/IROS40897.2019.8967797

1 Lidar oolbox Featured Examples

Extract Forest Metrics and Individual Tree Attributes from
Aerial Lidar Data

This example shows how to extract forest metrics and individual tree attributes from aerial lidar data.

Forest study and applications increasingly make use of lidar data acquired from airborne laser
scanning systems. Point cloud data from high density lidar enables measurement of not only forest
metrics, but also attributes of individual trees.

This example uses point cloud data from a LAZ file captured by an airborne lidar system as input. In
this example you first extract forest metrics by classifying point cloud data into ground and
vegetation points, and then extract individual tree attributes by segmenting vegetation points into
individual trees. This figure provides an overview of the process.

Extract
Forest Metrics

Input Point Segment the Normalize the Generate CHM Detect Segment Extract
Cloud Ground Elevation Tree Tops Individual Trees Tree Attributes

1-86

Load and Visualize Data

Unzip forestData.zip to a temporary directory and load the point cloud data from the LAZ file,
forestData. laz, into the MATLAB® workspace. The data is obtained from the Open Topography
Dataset [1 on page 1-0]. The point cloud primarily contains ground and vegetation points. Load the
point cloud data into the workspace using the readPointCloud function of the lasFileReader
object. Visualize the point cloud using the pcshow function.

dataFolder = fullfile(tempdir,"forestData",filesep);
dataFile = dataFolder + "forestData.laz";
% Check whether the folder and data file already exist or not
folderExists = exist(dataFolder, 'dir');
fileExists = exist(dataFile, 'file');
% Create a new folder if it doesn't exist
if ~folderExists
mkdir(dataFolder);
end
% Extract aerial data file if it doesn't exist
if ~fileExists
unzip('forestData.zip',dataFolder);
end
% Read LAZ data from file
lasReader = lasFileReader(dataFile);
% Read point cloud along with corresponding scan angle information
[ptCloud, pointAttributes] = readPointCloud(lasReader,"Attributes","ScanAngle");
% Visualize the input point cloud
figure
pcshow(ptCloud.Location)
title("Input Point Cloud")

Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data

Input Point Cloud

Segment Ground

Ground segmentation is a preprocessing step to isolate the vegetation data for extracting forest
metrics. Segment the data loaded from the LAZ file into ground and nonground points using the
segmentGroundSMRF function.

% Segment Ground and extract non-ground and ground points

groundPtsIdx = segmentGroundSMRF(ptCloud);

nonGroundPtCloud = select(ptCloud,~groundPtsIdx);

groundPtCloud = select(ptCloud,groundPtsIdx);

% Visualize non-ground and ground points in magenta and green, respectively
figure

pcshowpair(nonGroundPtCloud, groundPtCloud)

title("Segmented Non-Ground and Ground Points")

1-87

1 Lidar Toolbox Featured Examples

1-88

Segmented Non-Ground and Ground Points

Normalize the Elevation

Use elevation normalization to eliminate the effect of the terrain on your vegetation data. Use points
with normalized elevation as input for computing forest metrics and tree attributes. These are the

steps for elevation normalization.

Eliminate duplicate points along the x- and y-axes, if any, by using the groupsummary function.
2 Create an interpolant using the scatteredInterpolant object, to estimate ground at each

point in the point cloud data.

3 Normalize the elevation of each point by subtracting the interpolated ground elevation from the

original elevation.

groundPoints = groundPtCloud.Location;

% Eliminate duplicate points along x- and y-axes

[uniqueZ,uniqueXY] = groupsummary(groundPoints(:,3),groundPoints(:,1:2),@mean);
uniqueXY = [uniqueXY{:}1;

% Create interpolant and use it to estimate ground elevation at each point

F = scatteredInterpolant(double(uniqueXY),double(uniqueZ),"natural");
estElevation = F(double(ptCloud.Location(:,1)),double(ptCloud.Location(:,2)));
% Normalize elevation by ground

normalizedPoints = ptCloud.Location;

normalizedPoints(:,3) = normalizedPoints(:,3) - estElevation;

% Visualize normalized points

figure

pcshow(normalizedPoints)

title("Point Cloud with Normalized Elevation")

Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data

Point Cloud with Normalized Elevation

Extract Forest Metrics

Extract forest metrics from the normalized points using the helperExtractForestMetrics helper
function, attached to this example as a supporting file. The helper function first divides the point
cloud into grids based on the provided gridSize, and then calculates the forest metrics. The helper
function assumes that all points with a normalized height lower than cutoffHeight are ground and
the remaining points are vegetation. Compute these forest metrics.

* Canopy Cover (CC) — Canopy cover [2 on page 1-0] is the proportion of the forest covered by
the vertical projection of the tree crowns. Calculate it as the ratio of vegetation returns relative to
the total number of returns.

* Gap fraction (GF) — Gap fraction [3 on page 1-0] is the probability of a ray of light passing
through the canopy without encountering foliage or other plant elements. Calculate it as the ratio
of ground returns relative to the total number of returns.

* Leaf area index (LAI) — Leaf area index [3 on page 1-0]is the amount of one-sided leaf area per

_ cos(ang) *In(GF)
k

unit of ground area. The LAI value is calculated using the equation LAI = , Where

ang is the average scan angle, GF is the gap fraction, and k is the extinction coefficient, which is
closely related to the leaf-angle distribution.

% Set grid size to 10 meters per pixel and cutOffHeight to 2 meters

gridSize = 10;

cutOffHeight = 2;

leafAngDistribution = 0.5;

% Extract forest metrics

[canopyCover,gapFraction, leafAreaIndex] = helperExtractForestMetrics(normalizedPoints,

1-89

1 Lidar Toolbox Featured Examples

pointAttributes.ScanAngle,gridSize,cutOffHeight, leafAngDistribution);
% Visualize forest metrics
hForestMetrics = figure;
axCC = subplot(2,2,1,Parent=hForestMetrics);
axCC.Position = [0.05 0.51 0.4 0.4];
imagesc(canopyCover,Parent=axCC)
title(axCC, "Canopy Cover")
axis off
colormap(gray)
axGF = subplot(2,2,2,Parent=hForestMetrics);
axGF.Position = [0.55 0.51 0.4 0.4];
imagesc(gapFraction, 'Parent',axGF)
title(axGF,"Gap Fraction")
axis off
colormap(gray)
axLAI = subplot(2,2,[3 4],Parent=hForestMetrics);
axLAI.Position = [0.3 0.02 0.4 0.4];
imagesc(leafArealndex,Parent=axLAI)
title(axLAI, "Leaf Area Index")
axis off
colormap(gray)

Canopy Cover Gap Fraction

-

Leaf Area Index

Generate Canopy Height Model (CHM)
Canopy height models (CHMs) are raster representations of the height of trees, buildings, and other

structures above the ground topography. Use a CHM as an input for tree detection and segmentation.
Generate the CHM from your normalized elevation values using the pc2dem function.

1-90

Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data

% Set grid size to 0.5 meters per pixel

gridRes = 0.5;

% Generate CHM

canopyModel = pc2dem(pointCloud(normalizedPoints),gridRes,CornerFillMethod="max");
% Clip invalid and negative CHM values to zero
canopyModel(isnan(canopyModel) | canopyModel<@) = 0;

% Perform gaussian smoothing to remove noise effects

H = fspecial("gaussian",[5 51,1);

canopyModel = imfilter(canopyModel,H, 'replicate', 'same');
% Visualize CHM

figure

imagesc(canopyModel)

title('Canopy Height Model')

axis off

colormap(gray)

Canopy Height Model

Detect Tree Tops

Detect tree tops using the helperDetectTreeTops helper function, attached to this example as a
supporting file. The helper function detects tree tops by finding the local maxima within variable
window sizes [4 on page 1-0]in a CHM. For tree top detection, the helper function considers only
points with a normalized height greater than minTreeHeight.

% Set minTreeHeight to 5 m

minTreeHeight = 5;

% Detect tree tops

[treeTopRowId, treeTopColId] = helperDetectTreeTops(canopyModel,gridRes,minTreeHeight);

1-91

1 Lidar Toolbox Featured Examples

% Visualize treetops

figure

imagesc(canopyModel)

hold on

plot(treeTopColld, treeTopRowld, "rx",MarkerSize=3)
title("CHM with Detected Tree Tops")

axis off

colormap("gray")

CHM with Detected Tree Tops

Segment Individual Trees

Segment individual trees using the helperSegmentTrees helper function, attached to this example
as a supporting file. The helper function utilizes marker-controlled watershed segmentation [5 on
page 1-0] to segment individual trees. First, the function creates a binary marker image with tree
top locations indicated by a value of 1 . Then, function filters the CHM complement by minima
imposition to remove minima that are not tree tops. The function then performs watershed
segmentation on the filtered CHM complement to segment individual trees. After segmentation,
visualize the individual tree segments.

% Segment individual trees

label2D = helperSegmentTrees(canopyModel, treeTopRowId, treeTopColIld,minTreeHeight);
% Identify row and column id of each point in label2D and transfer labels

% to each point

rowId = ceil((ptCloud.Location(:,2) - ptCloud.YLimits(1))/gridRes)
colld = ceil((ptCloud.Location(:,1) - ptCloud.XLimits(1))/gridRes)
ind = sub2ind(size(label2D), rowlId,colId);

label3D = label2D(ind);

+ 1;
+ 1;

1-92

Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data

% Extract valid labels and corresponding points
validSegIds = label3D ~= 0;

ptVeg = select(ptCloud,validSegIds);

veglabel3D = label3D(validSeglIds);

% Assign color to each label

numColors = max(veglabel3D);

colorMap = randi([0 255],numColors,3)/255;
labelColors = label2rgb(veglabel3D,colorMap,QutputFormat="triplets");
% Visualize tree segments

figure

pcshow(ptVeg.Location, labelColors)
title("Individual Tree Segments")

view(2)

Individual Tree Segments

4.17192
417191 §

41719

Extract Tree Attributes

Extract individual tree attributes using the helperExtractTreeMetrics helper function, attached
to this example as a supporting file. First, the function identifies points belonging to individual trees
from labels. Then, the function extracts tree attributes such as tree apex location along the x- and y-
axes, approximate tree height, tree crown diameter, and area. The helper function returns the
attributes as a table, where each row represents the attributes of an individual tree.

% Extract tree attributes

treeMetrics = helperExtractTreeMetrics(normalizedPoints,label3D);
% Display first 5 tree segments metrics
disp(head(treeMetrics,5));

1-93

1 Lidar Toolbox Featured Examples

1-94

Treeld NumPoints TreeApexLocX TreeApexLocY TreeHeight CrownDiameter CrownAl

1 388 2.6867e+05 4.1719e+06 29.509 7.5325 44 . 5¢

2 22 2.6867e+05 4.1719e+06 21.464 0.99236 0.773:

3 243 2.6867e+05 4.1719e+06 24.201 5.7424 25. 8¢

4 101 2.6867e+05 4.1719e+06 21.927 3.4571 9. 38

5 54 2.6867e+05 4.1719e+06 19.515 3.0407 7.26
References

[1] Thompson, S. Illilouette Creek Basin Lidar Survey, Yosemite Valley, CA 2018. National Center for
Airborne Laser Mapping (NCALM). Distributed by OpenTopography. https://doi.org/10.5069/
G96M351N. Accessed: 2021-05-14

[2] Ma, Qin, Yanjun Su, and Qinghua Guo. “Comparison of Canopy Cover Estimations From Airborne
LiDAR, Aerial Imagery, and Satellite Imagery.” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 10, no. 9 (September 2017): 4225-36. https://doi.org/10.1109/
JSTARS.2017.2711482.

[3] Richardson, Jeffrey J., L. Monika Moskal, and Soo-Hyung Kim. "Modeling Approaches to Estimate
Effective Leaf Area Index from Aerial Discrete-Return LIDAR." Agricultural and Forest Meteorology
149, no. 6-7 (June 2009): 1152-60. https://doi.org/10.1016/j.agrformet.2009.02.007.

[4] Pitkanen, J., M. Maltamo, J. Hyypp4, and X. Yu. "Adaptive Methods for Individual Tree Detection
on Airborne Laser Based Canopy Height Model." International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences 36, no. 8 (January 2004): 187-91.

[5] Chen, Qi, Dennis Baldocchi, Peng Gong, and Maggi Kelly. “Isolating Individual Trees in a Savanna
Woodland Using Small Footprint Lidar Data.” Photogrammetric Engineering & Remote Sensing 72,
no. 8 (August 1, 2006): 923-32. https://doi.org/10.14358/PERS.72.8.923.

https://doi.org/10.5069/G96M351N
https://doi.org/10.5069/G96M351N
https://doi.org/10.1109/JSTARS.2017.2711482
https://doi.org/10.1109/JSTARS.2017.2711482
https://doi.org/10.1016/j.agrformet.2009.02.007
https://doi.org/10.14358/PERS.72.8.923

Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

Code Generation For Aerial Lidar Semantic Segmentation
Using PointNet++ Deep Learning

This example shows how to generate CUDA® MEX code for a PointNet++ [1 on page 1-0] network
for lidar semantic segmentation. This example uses a pretrained PointNet++ network that can
segment unorganized lidar point clouds belonging to eight classes (buildings, cars, trucks, poles,
power lines, fences, ground, and vegetation). For more information on PointNet++ network, see
“Getting Started with PointNet++” on page 4-52.

Third-Party Prerequisites

Required

* CUDA enabled NVIDIA® GPU and compatible driver.
Optional

For non-MEX builds such as static libraries, dynamic libraries, or executables, this example has the
following additional requirements.

* NVIDIA toolkit.

* NVIDIA cuDNN library.

* Environment variables for the compilers and libraries. For more information, see “Third-Party
Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Load PointNet++ Network

Use the getPointnetplusNet function, attached as a supporting file to this example, to load the
pretrained PointNet++ network. For more information on how to train this network, see “Aerial Lidar
Semantic Segmentation Using PointNet++ Deep Learning” on page 1-324 example.

net = getPointnetplusNet;

The pretrained network is a DAG network. To display an interactive visualization of the network
architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

The sampling and grouping layer, and the interpolation layer are implemented using the
functionlLayer (Deep Learning Toolbox), that does not support code generation. So, replace the
function layers in the network with custom layers that support code generation using the
helperReplaceFunctionLayers helper function and save the network as a MAT file with the name
pointnetplusCodegenNet.mat.

net = helperReplaceFunctionLayers(net);

1-95

1 Lidar Toolbox Featured Examples

1-96

pointnetplusPredict Entry-Point Function

The pointnetplusPredict entry-point function takes a point cloud data matrix as input and
performs prediction on it by using the deep learning network saved in the
pointnetplusCodegenNet.mat file. The function loads the network object from the
pointnetplusCodegenNet.mat file into a persistent variable mynet and reuses the persistent
variable in subsequent prediction calls.

type('pointnetplusPredict.m');

function out = pointnetplusPredict(in)
s#codegen

A persistent object mynet is used to load the DAG network object. At

the first call to this function, the persistent object is constructed and
setup. When the function is called subsequent times, the same object is
reused to call predict on inputs, thus avoiding reconstructing and
reloading the network object.

o® o° o o° o°

o

Copyright 2021 The MathWorks, Inc.
persistent mynet;

if isempty(mynet)
mynet = coder.loadDeepLearningNetwork('pointnetplusCodegenNet.mat');
end

% pass in input
out = predict(mynet,in);

Generate CUDA MEX Code

To generate CUDA® code for the pointnetplusPredict entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command with the size of point cloud data in the input layer of the network, which
in this case is [8192 1 3].

cfg = coder.gpuConfig('mex"');

cfg.TargetLang = 'C++';

cfg.DeepLearningConfig = coder.DeepLearningConfig(TargetLibrary="'cudnn');
codegen -config cfg pointnetplusPredict -args {randn(8192,1,3, 'single')} -report

Code generation successful: View report

To generate CUDA® code for the TensorRT target, create and use a TensorRT deep learning
configuration object instead of the CuDNN configuration object.

Segment Aerial Point Cloud Using Generated MEX Code

The network in this example is trained on the DALES data set [2 on page 1-0]. Follow the
instructions on the DALES website to download the data set to the folder specified by the
dataFolder variable. Create a folder to store the test data.

dataFolder = fullfile(tempdir, 'DALES');
testDataFolder = fullfile(dataFolder, 'dales las', 'test');

https://udayton.edu/engineering/research/centers/vision_lab/research/was_data_analysis_and_processing/dale.php

Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

Each point cloud in the DALES dataset covers an area of 500-by-500 meters, which is much larger
than the typical area covered by terrestrial lidar point clouds. For efficient memory processing, divide
the point cloud into small, non-overlapping blocks by using a blockedPointCloud object.

Define the block dimensions using the blockSize parameter. As the size of each point cloud in the
dataset varies, set the z-dimension of the block to Inf to avoid block creation along z-axis.

blockSize = [51 51 Inf];

First, create a blockedPointCloud object. Then, create a blockedPointCloudDatastore object
on the test data using the blockedPointCloud object.

tbpc = blockedPointCloud(fullfile(testDataFolder, '5080 54470.1las'),blockSize);
tbpcds = blockedPointCloudDatastore(tbpc);

Define the parameters used to train the network. For more details, see the “Aerial Lidar Semantic
Segmentation Using PointNet++ Deep Learning” on page 1-324 example.

numNearestNeighbors = 20;
radius = 0.05;
numPoints = 8192;
maxLabel = 1;
classNames = [

"ground"

"vegetation"

"cars"

"trucks"

"powerlines"

"fences"

"poles"

"buildings”

1;
numClasses = numel(classNames);

Initialize placeholders for the predicted and target labels.

labelsDensePred = []

labelsDenseTarget [1;

Apply the same transformation used on training data to the test data, tbpcds, follow these steps.
» Extract the point cloud.
* Downsample the point cloud to a specified number, numPoints.

* Normalize the point clouds to the range [0 1].
* Convert the point cloud to make it compatible with the input layer of the network.

Perform inference on the test point cloud data to compute prediction labels. Predict the labels of the
sparse point cloud using the pointnetplusPredict mex function. Then interpolate the prediction
labels of the sparse point cloud to obtain prediction labels of the dense point cloud and iterate this
process on all the non-overlapping blocks.

while hasdata(tbpcds)

% Read the block along with block information.
[ptCloudDense,infoDense] = read(tbpcds);

1-97

1 Lidar Toolbox Featured Examples

1-98

% Extract the labels from the block information.
labelsDense = infoDense.PointAttributes.Classification;

% Select only labeled data.
ptCloudDense = select(ptCloudDense{1l}, labelsDense~=0);
labelsDense = labelsDense(labelsDense~=0);

% Use the helperDownsamplePoints function, attached to this example as a
% supporting file, to extract a downsampled point cloud from the
% dense point cloud.
ptCloudSparse = helperDownsamplePoints(ptCloudDense,
labelsDense, numPoints);

% Make the spatial extent of the dense point cloud equal to the sparse

% point cloud.

limits = [ptCloudDense.XLimits;ptCloudDense.YLimits;ptCloudDense.ZLimits];

ptCloudSparselLocation = ptCloudSparse.Location;

ptCloudSparselLocation(1:2,:) = limits(:,1:2)"';

ptCloudSparse = pointCloud(ptCloudSparseLocation,Color=ptCloudSparse.Color,
Intensity=ptCloudSparse.Intensity, Normal=ptCloudSparse.Normal);

% Use the helperNormalizePointCloud function, attached to this example as
% a supporting file, to normalize the point cloud between 0 and 1.
ptCloudSparseNormalized = helperNormalizePointCloud(ptCloudSparse);
ptCloudDenseNormalized = helperNormalizePointCloud(ptCloudDense);

Use the helperTransformToTestData function, defined at the end of this
example, to convert the point cloud to a cell array and to permute the
dimensions of the point cloud to make it compatible with the input layer

of the network.

ptCloudSparseForPrediction = helperTransformToTestData(ptCloudSparseNormalized);

o® o of o°

% Get the output predictions.

scoresPred = pointnetplusPredict mex(single(ptCloudSparseForPrediction{1,1}));
[~,labelsSparsePred] = max(scoresPred,[],3);

labelsSparsePred = uint8(labelsSparsePred);

% Use the helperInterpolate function, attached to this example as a

% supporting file, to calculate labels for the dense point cloud,

% using the sparse point cloud and labels predicted on the sparse point cloud.

interpolatedLabels = helperInterpolate(ptCloudDenseNormalized,
ptCloudSparseNormalized, labelsSparsePred, numNearestNeighbors,
radius,maxLabel,numClasses);

% Concatenate the predicted and target labels from the blocks.

labelsDensePred = vertcat(labelsDensePred, interpolatedLabels);

labelsDenseTarget = vertcat(labelsDenseTarget, labelsDense);
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 12).

For better visualisation, display a single block inferred from the point cloud data.

figure;
ax = pcshow(ptCloudDense.Location,interpolatedLabels);

Warning: MATLAB has disabled some advanced graphics rendering features by switching to software

Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

axis off;
helperLabelColorbar(ax,classNames);
title("Point Cloud Overlaid with Detected Semantic Labels");

o ud O 31] : =1 buildings
Warning: This callback workflow is not currently supported.

See Callback Definition in the MATLAB documentation.

fences

powerlines

trucks

ground

Supporting Functions

The helperLabelColorbar function adds a colorbar to the current axis. The colorbar is formatted
to display the class names with the color.

function helperLabelColorbar(ax,classNames)
% Colormap for the original classes.
cmap = [[0,0,255];

[0,255,0];

[255,192,203];

[255,255,01;

[255,0,255];

[255,165,01;

[139,0,150];

[255,0,011;
cmap = cmap./255;
cmap = cmap(l:numel(classNames),:);
colormap(ax,cmap);

% Add colorbar to current figure.

c = colorbar(ax);
c.Color = 'w';

1-99

1 Lidar Toolbox Featured Examples

1-100

% Center tick labels and use class names for tick marks.
numClasses = size(classNames, 1);

c.Ticks = 1:1:numClasses;

c.TickLabels = classNames;

% Remove tick mark.
c.TickLength = 0;
end

The helperTransformToTestData function converts the point cloud into a cell array and permutes
the dimensions of the point cloud to make it compatible with the input layer of the network.

function data = helperTransformToTestData(data)
if ~iscell(data)
data = {data};
end
numObservations = size(data,1l);
for i = 1:numObservations
tmp = data{i,1}.Location;
data{i,1l} = permute(tmp,[1l 3 2]);
end
end

References

[1] Qi, Charles R., Li Yi, Hao Su, and Leonidas J. Guibas. "PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space." ArXiv:1706.02413 [Cs], June 7, 2017. https://arxiv.org/abs/
1706.02413.

[2] Varney, Nina, Vijayan K. Asari, and Quinn Graehling. "DALES: A Large-Scale Aerial LiDAR Data
Set for Semantic Segmentation." ArXiv:2004.11985 [Cs, Stat], April 14, 2020. https://arxiv.org/abs/
2004.11985.

https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/2004.11985
https://arxiv.org/abs/2004.11985

Build Map and Localize Using Segment Matching

Build Map and Localize Using Segment Matching

This example shows how to build a map with lidar data and localize the position of a vehicle on the
map using SegMatch [1] on page 1-0 , a place recognition algorithm based on segment matching.

Autonomous driving systems use localization to determine the position of the vehicle within a mapped
environment. Autonomous navigation requires accurate localization, which relies on an accurate map.
Building an accurate map of large scale environments is difficult because the map accumulates drift
over time, and detecting loop closures to correct for accumulated drift is challenging due to dynamic
obstacles. The SegMatch algorithm is robust to dynamic obstacles and reliable in large scale
environments. The algorithm is a segment-based approach that takes advantage of descriptive shapes
and recognizes places by matching segments.

Overview

Like the “Build a Map from Lidar Data Using SLAM” example, this example uses 3-D lidar data to
build a map and corrects for the accumulated drift using graph SLAM. However, this example does
not require global pose estimates from other sensors, such as an inertial measurement unit (IMU).
After building the map, this example uses it to localize the vehicle in a known environment.

In this example, you learn how to:
* Use SegMatch to find the relative transformation between two point clouds that correspond to the
same place

* Build a map using SegMatch for loop closure detection
* Localize on a prebuilt map using SegMatch

Download Data

The data used in this example is part of the Velodyne SLAM Dataset. It includes approximately 6
minutes of data recorded with a Velodyne® HDL64E-S2 scanner. Download the data to a temporary
directory. This can take a few minutes.

baseDownloadURL = 'https://www.mrt.kit.edu/z/publ/download/velodyneslam/data/scenariol.zip";
dataFolder = fullfile(tempdir, 'kit velodyneslam data scenariol', filesep);
options = weboptions('Timeout',Inf);

zipFileName = dataFolder+"scenariol.zip";
% Get the full file path to the PNG files in the scenariol folder.
pointCloudFilePattern = fullfile(dataFolder, 'scenariol’', 'scan*.png');
numExpectedFiles = 2513;
folderExists = exist(dataFolder, 'dir');
if ~folderExists
% Create a folder in a temporary directory to save the downloaded zip file.
mkdir(dataFolder)

disp('Downloading scenariol.zip (153 MB) ...")
websave(zipFileName, baseDownloadURL,options);

% Unzip downloaded file.
unzip(zipFileName,dataFolder)

elseif folderExists && numel(dir(pointCloudFilePattern)) < numExpectedFiles

1-101

https://www.mrt.kit.edu/z/publ/download/velodyneslam/dataset.html

1 Lidar Toolbox Featured Examples

1-102

% Redownload the data if it got reduced in the temporary directory.
disp('Downloading scenariol.zip (153 MB) ...")
websave(zipFileName, baseDownloadURL,options);

% Unzip downloaded file.
unzip(zipFileName,dataFolder)
end

Load and Select Data

The downloaded dataset stores point cloud data in PNG files. Create a file datastore using the
helperReadVelodyneSLAMData on page 1-0 function to load point cloud data from the PNG files
and convert distance values to 3-D coordinates. The helper function is a custom read function, which
is designed for the Velodyne SLAM Dataset. Select a subset of the data and split the data to use for
map building and for localization.

% Create a file datastore to read files in the right order.
fileDS = fileDatastore(pointCloudFilePattern, 'ReadFcn',
@helperReadVelodyneSLAMData);

% Read the point clouds.
ptCloudArr = readall(fileDS);

% Select a subset of point cloud scans, and split the data to use for
% map building and for localization.

vertcat(ptCloudArr{1:5:1550});
vertcat(ptCloudArr{2:5:1550});

ptCloudMap
ptCloudLoc

% Visualize the first point cloud.
figure

pcshow(ptCloudMap(1))

title('Point Cloud Data')

Build Map and Localize Using Segment Matching

Point Cloud Data

Pod gt e lh-I-IJ ¥
f -r ' - %

n.’-’ ‘I; 3

SegMatch Overview

The SegMatch algorithm consists of four different components: point cloud segmentation, feature
extraction, segment matching, and geometric verification. For best results, preprocess the point cloud
before performing these four steps.

Preprocess Point Cloud
To select the most relevant point cloud data, perform the following preprocessing steps:

1 Select a cylindrical neighborhood centered around the vehicle to extract a local point cloud of
interest. First, specify a cylindrical neighborhood based on the distance of the points from the
origin in the x and y directions. Then, select the area of interest using select.

2 Remove the ground in preparation to segment the point cloud into distinct objects. Use
segmentGroundSMRF to segment the ground.

% Select a point cloud from the map for preprocessing.
ptCloud = ptCloudMap(25);

% Set the cylinder radius and ego radius.
cylinderRadius = 40;
egoRadius = 1;

% Compute the distance between each point and the origin.
dists = hypot(ptCloud.Location(:,:,1),ptCloud.Location(:,:,2));

% Select the points inside the cylinder radius and outside the ego radius.

1-103

1 Lidar Toolbox Featured Examples

1-104

cylinderIdx = dists <= cylinderRadius & dists >= egoRadius;
cylinderPtCloud = select(ptCloud,cylinderIdx, 'OutputSize', ' full');

% Remove the ground.
[~,ptCloudNoGround] = segmentGroundSMRF(cylinderPtCloud, 'ElevationThreshold',0.05);

% Visualize the point cloud before and after preprocessing.
figure

pcshowpair(ptCloud, ptCloudNoGround)

title('Point Cloud Before and After Preprocessing')

Point Cloud Before and After Preprocessing

Segmentation and Feature Extraction
Next, segment the point cloud and extract features from each segment.

Segment the point cloud by using the segmentLidarData function and visualize the segments. For
this example, each segment must have a minimum of 150 points. This produces segment clusters that
represent distinct objects and have enough points to characterize the area in the map.

Different datasets require different parameters for segmentation. Requiring fewer points for
segments can lead to false positive loop closures, and limiting the segments to larger clusters can
eliminate segments that are important for place recognition. You must also tune the distance and
angle thresholds to ensure that each segment corresponds to one object. A small distance threshold
can result in many segments that correspond to the same object, and a large distance threshold and
small angle threshold can result in segments that combine many objects.

Build Map and Localize Using Segment Matching

minNumPoints = 150;

distThreshold = 1;

angleThreshold = 180;

[labels,numClusters] = segmentlLidarData(ptCloudNoGround,distThreshold,
angleThreshold, 'NumClusterPoints',minNumPoints);

% Remove points that contain a label value of 0 for visualization.
idxValidPoints = find(labels);

labelColorIndex = labels(idxValidPoints);

segmentedPtCloud = select(ptCloudNoGround,idxValidPoints);

figure
pcshow(segmentedPtCloud.Location, labelColorIndex)
title('Point Cloud Segments')

Point Cloud Segments

Extract features from each segment by using the extractEigenFeatures function. Eigenvalue-
based features are geometric features. Each feature vector includes linearity, planarity, scattering,
omnivariance, anisotropy, eigenentropy, and change in curvature.

[features,segments] = extractEigenFeatures(ptCloud, labels);
disp(features)

31x1 eigenFeature array with properties:

Feature
Centroid

disp(segments)

1-105

1 Lidar Toolbox Featured Examples

1-106

31x1 pointCloud array with properties:

Location
Count
XLimits
YLimits
ZLimits
Color
Normal
Intensity

Segment Matching and Geometric Verification

Find the matching segments and the transformation between the segments for two point cloud scans
that correspond to a loop closure.

Preprocess and extract segment features from the two point clouds. The
helperPreProcessPointCloud on page 1-0 function includes the preprocessing steps in the
Preprocess Point Cloud on page 1-0 section, to simplify preprocessing the point cloud throughout
the workflow.

ptCloudl = ptCloudMap(27);
ptCloud2 = ptCloudMap(309);
ptCloudl = helperPreProcessPointCloud(ptCloudl, egoRadius, cylinderRadius);
ptCloud2 = helperPreProcessPointCloud(ptCloud2,egoRadius, cylinderRadius);

labelsl = segmentLidarData(ptCloudl,distThreshold,
angleThreshold, 'NumClusterPoints',minNumPoints);

labels2 = segmentLidarData(ptCloud2,distThreshold,
angleThreshold, 'NumClusterPoints',minNumPoints);

[featuresl, segmentsl]
[features2, segments2]

extractEigenFeatures(ptCloudl, labelsl);
extractEigenFeatures(ptCloud2,labels2);

Find the possible segment matches based on the normalized euclidean distance between the feature
vectors by using the pcmatchfeatures function.

featureMatrixl vertcat(featuresl.Feature);
featureMatrix?2 vertcat(features2.Feature);
indexPairs = pcmatchfeatures(featureMatrixl, featureMatrix2);

Perform geometric verification by identifying inliers and finding the 3-D rigid transformation between
segment matches using the estimateGeometricTransform3D function. Based on the number of
inliers, the point clouds can be classified as a loop closure.

centroidsl vertcat(featuresl(indexPairs(:,1)).Centroid);
centroids?2 vertcat(features2(indexPairs(:,2)).Centroid);
[tform,inlierPairs] = estimateGeometricTransform3D(centroidsl,centroids2, 'rigid');

Visualize the segment matches by using the pcshowMatchedFeatures function.

inlierIdxl = indexPairs(inlierPairs,1);
inlierIdx2 = indexPairs(inlierPairs,2);
figure

pcshowMatchedFeatures(segmentsl(inlierIdxl),segments2(inlierIdx2),
featuresl(inlierIdxl), features2(inlierIdx2))
title('Segment Matches"')

Build Map and Localize Using Segment Matching

Segment Matches

Align the segments with the transformation from the geometric verification step using pccat and
pctransform.

ptCloudSegmentsl = pccat(segmentsl);
ptCloudSegments2 = pccat(segments2);
tformedPtCloudSegmentsl = pctransform(ptCloudSegmentsl,tform);

Visualize the aligned segments using pcshowpair.
figure

pcshowpair(tformedPtCloudSegmentsl, ptCloudSegments2)
title('Aligned Segments')

1-107

1 Lidar Toolbox Featured Examples

Aligned Segments

Build Map

The map building procedure consists of the following steps:

1 Preprocess the point cloud

2 Register the point cloud

3 Segment the point cloud and extract features
4 Detect loop closures

Preprocess Point Cloud

Preprocess the previous and current point cloud using helperPreProcessPointCloud on page 1-
0 . Downsample the point clouds using pcdownsample to improve registration speed and accuracy.
To tune the downsample percentage input, find the lowest value that maintains the desired
registration accuracy when the vehicle turns.

currentViewld = 2;

prevPtCloud = helperPreProcessPointCloud(ptCloudMap(currentViewId-1),
egoRadius,cylinderRadius);

ptCloud = helperPreProcessPointCloud(ptCloudMap(currentViewld),
egoRadius,cylinderRadius);

downsamplePercent = 0.5;

1-108

Build Map and Localize Using Segment Matching

prevPtCloudFiltered = pcdownsample(prevPtCloud, 'random',downsamplePercent);
ptCloudFiltered = pcdownsample(ptCloud, 'random',downsamplePercent);

Register Point Cloud

Register the current point cloud with the previous point cloud to find the relative transformation.

gridStep = 3;
relPose = pcregisterndt(ptCloudFiltered, prevPtCloudFiltered,gridStep);

Use a pcviewset object to track absolute poses and connections between registered point clouds.
Create an empty pcviewset.

vSet = pcviewset;

Initialize the pose of the first point cloud to an identity rigid transformation, and add it to the view set
using addView.

initAbsPose = rigid3d;
vSet = addView(vSet,currentViewId-1,initAbsPose);

Compute the absolute pose of the second point cloud using the relative pose estimated during
registration, and add it to the view set.

absPose = rigid3d(relPose.T*initAbsPose.T);
vSet = addView(vSet,currentViewld,absPose);

Connect the two views using addConnection.

vSet = addConnection(vSet,currentViewId-1,currentViewId, relPose);

Transform the current point cloud to align it to the global map.

ptCloud = pctransform(ptCloud,absPose);

Segment Point Cloud and Extract Features

Segment the previous and current point clouds using segmentLidarData.

labelsl = segmentlLidarData(prevPtCloud,distThreshold,angleThreshold,
"NumClusterPoints',minNumPoints);

labels2 = segmentlLidarData(ptCloud,distThreshold,angleThreshold,

"NumClusterPoints',minNumPoints);

Extract features from the previous and current point cloud segments using
extractEigenFeatures.

[prevFeatures,prevSegments] = extractEigenFeatures(prevPtCloud, labelsl);
[features,segments] = extractEigenFeatures(ptCloud, labels2);

Track the segments and features using a pcmapsegmatch object. Create an empty pcmapsegmatch.
sMap = pcmapsegmatch;

Add the views, features, and segments for the previous and current point clouds to the
pcmapsegmatch using addView.

sMa
sMa

addView(sMap, currentViewId-1,prevFeatures, prevSegments);
addView(sMap, currentViewld, features, segments);

p
p

1-109

1 Lidar Toolbox Featured Examples

Detect Loop Closures

The estimated poses accumulate drift as more point clouds are added to the map. Detecting loop
closures helps correct for the accumulated drift and produce a more accurate map.

Detect loop closures using findPose.

[absPoseMap, LloopClosureViewId] = findPose(sMap,absPose);
isLoopClosure = ~isempty(absPoseMap);

If findPose detects a loop closure, find the transformation between the current view and the loop
closure view and add it to the pcviewset object.

Use the absolute pose of the current view without the accumulated drift, absPoseMap, and the
absolute pose of the loop closure view, absPoselLoop, to compute the relative pose between the loop
closure poses without the drift.

if isLoopClosure
absPoselLoop = poses(vSet,loopClosureViewId).AbsolutePose;
relPoseLoopToCurrent = rigid3d(absPoseMap.T*invert(absPoselLoop).T);

Add the loop closure relative pose as a connection using addConnection.

vSet = addConnection(vSet, loopClosureViewld, currentViewld,
relPoselLoopToCurrent);

Correct for the accumulated drift using pose graph optimization. Consider finding more than one loop
closure connection before optimizing the poses, since optimizing the pose graph and updating the
pcmapsegmatch ohject are both computationally intensive.

Save the poses before optimization. The poses are needed to update the segments and centroid
locations in the pcmapsegmatch object.

prevPoses = vSet.Views.AbsolutePose;

Create a pose graph from the view set using createPoseGraph, and optimize the pose graph using
optimizePoseGraph (Navigation Toolbox).

G = createPoseGraph(vSet);
optimG = optimizePoseGraph(G, 'g20-levenberg-marquardt');
vSet = updateView(vSet,optimG.Nodes);

Find the transformations from the poses before and after correcting for drift and use them to update
the map segments and centroid locations using updateMap.

optimizedPoses = vSet.Views.AbsolutePose;

relPoseOpt = rigid3d.empty;
for k = 1:numel(prevPoses)
relPoseOpt(k) = rigid3d(invert(prevPoses(k)).T* ...
optimizedPoses(k).T);
end

sMap = updateMap(sMap, relPoseOpt);
end

To build the map and correct for accumulated drift, apply these steps to the rest of the point cloud
scans.

1-110

Build Map and Localize Using Segment Matching

% Set the random seed for example reproducibility.
rng(0)

% Update display every 5 scans.
figure
updateRate = 5;

% Initialize variables for registration.
prevPtCloud = ptCloudFiltered;
prevPose = rigid3d;

% Keep track of the loop closures to optimize the poses once enough loop
% closures are detected.
totalLoopClosures = 0;

for i = 3:numel(ptCloudMap)
ptCloud = ptCloudMap(i);

% Preprocess and register the point cloud.

ptCloud = helperPreProcessPointCloud(ptCloud, egoRadius,cylinderRadius);

ptCloudFiltered = pcdownsample(ptCloud, 'random',downsamplePercent);

relPose = pcregisterndt(ptCloudFiltered,prevPtCloud,gridStep,
'InitialTransform', relPose);

ptCloud = pctransform(ptCloud,absPose);

% Store the current point cloud to register the next point cloud.
prevPtCloud = ptCloudFiltered;

% Compute the absolute pose of the current point cloud.
absPose = rigid3d(relPose.T*absPose.T);

% If the vehicle has moved at least 2 meters since last time, continue
% with segmentation, feature extraction, and loop closure detection.
if norm(absPose.Translation-prevPose.Translation) >= 2

% Segment the point cloud and extract features.

labels = segmentLidarData(ptCloud,distThreshold,angleThreshold,
"NumClusterPoints',minNumPoints);

[features,segments] = extractEigenFeatures(ptCloud,labels);

% Keep track of the current view id.
currentViewId = currentViewId+1;

% Add the view to the point cloud view set and map representation.

vSet = addView(vSet,currentViewld, absPose);

vSet = addConnection(vSet,currentViewId-1,currentViewld,
rigid3d(absPose.T*invert(prevPose).T));

sMap = addView(sMap,currentViewId, features,segments);

% Update the view set display.

if mod(currentViewld,updateRate) ==
plot(vSet)
drawnow

end

% Check if there is a loop closure.
[

absPoseMap, loopClosureViewId] = findPose(sMap,absPose, 'MatchThreshold',1,
'MinNumInliers',5, 'NumSelectedClusters', 4, 'NumExcludedViews',b150);

1-111

1 Lidar oolbox Featured Examples

isLoopClosure = ~isempty(absPoseMap);

if isLoopClosure
totalLoopClosures = totalLoopClosures+1;
% Find the relative pose between the loop closure poses.
absPoselLoop = poses(vSet, loopClosureViewId).AbsolutePose;

relPoseLoopToCurrent = rigid3d(absPoseMap.T*invert(absPoselLoop).

vSet = addConnection(vSet, loopClosureViewld, currentViewld,
relPoseLoopToCurrent);

% Optimize the graph of poses and update the map every time 3
% loop closures are detected.
if mod(totalLoopClosures,3) ==

prevPoses = vSet.Views.AbsolutePose;

% Correct for accumulated drift.

G = createPoseGraph(vSet);

optimG = optimizePoseGraph(G, 'g2o-levenberg-marquardt');
vSet = updateView(vSet,optimG.Nodes);

% Update the map.
optimizedPoses = vSet.Views.AbsolutePose;
relPoseOpt = rigid3d.empty;
for k = 1:numel(prevPoses)
relPoseOpt(k) = rigid3d(invert(prevPoses(k)).T* ...
optimizedPoses(k).T);
end
sMap = updateMap(sMap, relPoseOpt);

% Update the absolute pose after pose graph optimization.
absPose = optimizedPoses(end);
end
end
prevPose = absPose;
end
end

1-112

Build Map and Localize Using Segment Matching

100 -100 X

% Visualize the map of segments from the top view.
figure

show(sMap)

view(2)

title('Map of Segments')

1-113

1 Lidar oolbox Featured Examples

1-114

Map of Segments

Localize Vehicle in Known Map

The preprocessing steps for localization using SegMatch are the same preprocessing steps used for
map building. Since the algorithm relies on consistent segmentation, use the same segmentation
parameters for best results.

ptCloud = ptCloudLoc(1);

% Preprocess the point cloud.
ptCloud = helperPreProcessPointCloud(ptCloud,egoRadius, cylinderRadius);

% Segment the point cloud and extract features.

labels = segmentlLidarData(ptCloud,distThreshold,angleThreshold,
"NumClusterPoints',minNumPoints);

features = extractEigenFeatures(ptCloud, labels);

Because there is no position estimate for the vehicle, you must use the extent of the map for initial
vehicle localization. Select the extent of the map to localize for the first time using selectSubmap.

sMap = selectSubmap(sMap, [sMap.XLimits sMap.YLimits sMap.ZLimits]);

Use the findPose object function of pcmapsegmatch to localize the vehicle on the prebuilt map.
absPoseMap = findPose(sMap, features, 'MatchThreshold',1, '"MinNumInliers',5);

Visualize the map, and use showShape to visualize the vehicle on the map as a cuboid.

mapSegments = pccat(sMap.Segments);
hAxLoc = pcshow(mapSegments.Location, 'p');

Build Map and Localize Using Segment Matching

title('Localization on a Prebuilt Map')
view(2)

poseTranslation = absPoseMap.Translation;

quat = quaternion(absPoseMap.Rotation', 'rotmat', 'point');

theta = eulerd(quat, 'ZYX', 'point');

pos = [poseTranslation 5 9 3.5 theta(2) theta(3) theta(l)];

showShape(' cuboid',pos, 'Color', 'green', 'Parent',hAxLoc, 'Opacity',0.8, 'LineWidth',0.5)

Localization on a Prebuilt Map

To improve localization speed for the rest of the scans, select a submap using selectSubmap.

submapSize = [65 65 200];
sMap = selectSubmap(sMap,poseTranslation, submapSize);

Continue localizing the vehicle using the rest of the point cloud scans. Use isInsideSubmap and
selectSubmap to keep the submap updated. If there are not enough segments to localize the vehicle
using segment matching, use registration to estimate the pose.

% Visualize the map.

figure('Visible', 'on")

hAx = pcshow(mapSegments.Location, 'p');
title('Localization on a Prebuilt Map')

% Set parameter to update submap.
submapThreshold = 30;

% Initialize the poses and previous point cloud for registration.
prevPtCloud = ptCloud;

1-115

1 Lidar oolbox Featured Examples

relPose = rigid3d;
prevAbsPose = rigid3d;

% Segment each point cloud and localize by finding segment matches.
for n = 2:numel(ptCloudLoc)
ptCloud = ptCloudLoc(n);

% Preprocess the point cloud.
ptCloud = helperPreProcessPointCloud(ptCloud, egoRadius,cylinderRadius);

% Segment the point cloud and extract features.

labels = segmentLidarData(ptCloud,distThreshold,angleThreshold,
"NumClusterPoints',minNumPoints);

features = extractEigenFeatures(ptCloud, labels);

% Localize the point cloud.
absPoseMap = findPose(sMap, features, 'MatchThreshold',1, '"MinNumInliers',5);

% Do registration when the position cannot be estimated with segment
% matching.
if isempty(absPoseMap)
relPose = pcregisterndt(ptCloud,prevPtCloud,gridStep,
'InitialTransform', relPose);
absPoseMap = rigid3d(relPose.T*prevAbsPose.T);
end

% Display position estimate in the map.

poseTranslation = absPoseMap.Translation;

quat = quaternion(absPoseMap.Rotation', 'rotmat', 'point');

theta = eulerd(quat, 'ZYX', 'point');

pos = [poseTranslation 5 9 3.5 theta(2) theta(3) theta(l)];
showShape('cuboid',pos, 'Color', 'green', 'Parent',hAx, 'Opacity',0.8, 'LineWidth',0.5)

% Determine if selected submap needs to be updated.
[isInside,distToEdge] = isInsideSubmap(sMap,poseTranslation);
needSelectSubmap = ~isInside ... % Current pose is outside submap.
|| any(distToEdge(1:2) < submapThreshold); % Current pose is close to submap edge

% Select a new submap.
if needSelectSubmap
sMap = selectSubmap(sMap,poseTranslation, submapSize);

end
prevAbsPose = absPoseMap;
prevPtCloud = ptCloud;

end

1-116

Build Map and Localize Using Segment Matching

Localization on a Prebuilt Map

References

[1] R. Dube, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena. "SegMatch: Segment Based
Place Recognition in 3D Point Clouds." IEEE International Conference on Robotics and Automation
(ICRA), 2017.

Supporting Functions

helperReadVelodyneSLAMData reads point clouds from PNG image files from the Velodyne SLAM
Dataset.

helperPreProcessPointCloud selects a cylindrical neighborhood and removes the ground from a
point cloud.

function ptCloud = helperPreProcessPointCloud(ptCloud, egoRadius,cylinderRadius)

% Compute the distance between each point and the origin.
dists = hypot(ptCloud.Location(:,:,1),ptCloud.Location(:,:,2));

% Select the points inside the cylinder radius and outside the ego radius.
cylinderIdx = dists <= cylinderRadius & dists >= egoRadius;
ptCloud = select(ptCloud,cylinderIdx, 'OutputSize', 'full');

% Remove ground.
[~,ptCloud] = segmentGroundSMRF(ptCloud, 'ElevationThreshold',0.05);

1-117

1 Lidar Toolbox Featured Examples

end

1-118

Lidar and Camera Calibration

Lidar and Camera Calibration

This example shows you how to estimate a rigid transformation between a 3-D lidar sensor and a
camera, then use the rigid transformation matrix to fuse the lidar and camera data.

Overview

Lidar sensors and cameras are commonly used together in autonomous driving applications because
a lidar sensor collects 3-D spatial information while a camera captures the appearance and texture of
that space in 2-D images. You can fuse the data from these sensors to improve your object detection
and classification. Lidar-camera calibration estimates a transformation matrix that gives the relative
rotation and translation between the two sensors. You use this matrix when performing lidar-camera
data fusion.

This diagram illustrates the workflow for the lidar and camera calibration (LCC) process, where we
use checkerboard as a calibration object. We extract the checkerboard corners and planes from lidar
and camera data, then establish a geometrical relationship between their coordinate systems to
perform calibration. For more information on lidar-camera calibration process, see “What Is Lidar-
Camera Calibration?” on page 4-10

i

C |
Extraction

6.

Calibration

Point Clouds in
PCD File
This example uses data from two different lidar sensors, a VelodyneLiDAR ® HDL-64 sensor and a

VelodyneLiDAR ® VLP-16 sensor. For the HDL-64 sensor, use data collected from a Gazebo
environment.

1-119

1 Lidar oolbox Featured Examples

The HDL-64 sensor captures data as a set of PNG images and corresponding PCD point clouds. This
example assumes that you already know the intrinsic parameters of the camera. For more information
on extracting camera intrinsic parameters, see “Evaluating the Accuracy of Single Camera
Calibration”.

Load Data

Load the Velodyne HDL-64 sensor data from Gazebo.

imagePath = fullfile(toolboxdir('lidar'),'lidardata', 'lcc', 'HDL64", "images');
ptCloudPath = fullfile(toolboxdir('lidar"'),'lidardata', 'lcc', 'HDL64", 'pointCloud');
cameraParamsPath = fullfile(imagePath, 'calibration.mat');

% Load camera intrinsics.
intrinsic = load(cameraParamsPath);

% Load images using imageDatastore.
imds = imageDatastore(imagePath);
imageFileNames = imds.Files;

% Load point cloud files.
pcds = fileDatastore(ptCloudPath, 'ReadFcn',@pcread);
ptCloudFileNames = pcds.Files;

% Square size of the checkerboard.
squareSize = 200;

% Set random seed to generate reproducible results.
rng('default")

1-120

Lidar and Camera Calibration

Image Features

Detect Checkerboard Corners

This example uses a checkerboard pattern for calibration. First, estimate the checkerboard edges
from the camera data. Use the estimateCheckerboardCorners3d function to calculate the
coordinates of the checkerboard corners and size of the actual checkerboard in millimeters. The
function estimates corners as 3-D coordinates in world coordinate system.

[imageCorners3d, checkerboardDimension,datalUsed] = ...
estimateCheckerboardCorners3d(imageFileNames,intrinsic.cameraParams, squareSize);

% Remove image files that are not used.
imageFileNames = imageFileNames (dataUsed);

Visualize the results by using the helperShowImageCorners helper function.

% Display checkerboard corners.
helperShowImageCorners(imageCorners3d, imageFileNames,intrinsic.cameraParams)

Detect Checkerboard Plane

Next, use the detectRectangularPlanePoints function to detect the checkerboard plane in the
lidar data. The function detects the checkerboard using the board dimensions calculated by the
estimateCheckerboardCorners3d function.

1-121

1 Lidar oolbox Featured Examples

% Extract the checkerboard ROI from the detected checkerboard image corners.
roi = helperComputeR0OI(imageCorners3d,5);

% Filter the point cloud files that are not used for detection.

ptCloudFileNames = ptCloudFileNames(dataUsed);

[lidarCheckerboardPlanes, framesUsed, indices] = ...
detectRectangularPlanePoints(ptCloudFileNames, checkerboardDimension,R0I=roi);

% Remove ptCloud files that are not used.
ptCloudFileNames = ptCloudFileNames (framesUsed);

% Remove image files.
imageFileNames = imageFileNames (framesUsed);

% Remove 3-D corners from images.
imageCorners3d = imageCorners3d(:,:,framesUsed);

Visualize the detected checkerboard by using the helperShowCheckerboardPlanes function.

helperShowCheckerboardPlanes (ptCloudFileNames,indices)

Lidlar Features

1-122

Lidar and Camera Calibration

Calibrate Lidar and Camera

Use the estimateLidarCameraTransform function to estimate the rigid transformation matrix
between the lidar sensor and the camera.

[tform,errors] = estimatelLidarCameraTransform(lidarCheckerboardPlanes,
imageCorners3d, intrinsic.cameraParams);

After calibration, you can use this transformation matrix to:

* Project lidar point clouds on images, using the projectLidarPointsOnImage function.

* Enhance lidar point clouds using color information from images, using the fuseCameraToLidar
function.

Use the helperFuseLidarCamera function to visualize the lidar and the image data fused together.

helperFuselLidarCamera(imageFileNames,ptCloudFileNames, indices,
intrinsic.cameraParams,tform);

Projected Licar Poirts

Colored Lidar Points

Visualize Calibration Errors

You can estimate the calibration accuracy using these types of errors.

1-123

1 Lidar Toolbox Featured Examples

» Translation Error — The difference between the centroid coordinates of the checkerboard planes
in the point clouds and those in the corresponding images, in meters.

* Rotation Error — The difference between the normal angles defined by the checkerboard planes in
the point clouds and those in the corresponding images, in radians.

* Reprojection Error — The difference between the projected (transformed) centroid coordinates of
the checkerboard planes from the point clouds and those in the corresponding images, in pixels.

Plot the estimated error values by using the helperShowError function.

helperShowError(errors)

Translation Error Rotation Error

%107

— — — Overall Mean Translation Eron0.0048316 in m — — —Owerall Mean Rotation Errord. 79609 in deg
[] [] [] [] [1 [] []] [] []

Reprojection Error

Calibration on Real Data

Test the LCC workflow on actual VLP-16 lidar data to evaluate its performance.

clear

imagePath = fullfile(toolboxdir('lidar'),'lidardata', 'lcc','vlpl6"', 'images');
ptCloudPath = fullfile(toolboxdir('lidar"'),'lidardata', 'lcc', 'vlpl6', 'pointCloud');
cameraParamsPath = fullfile(imagePath, 'calibration.mat');

% Load camera intrinscs.
intrinsic = load(cameraParamsPath);

% Load images using imageDatastore.
imds = imageDatastore(imagePath);
imageFileNames = imds.Files;

% Load point cloud files.

pcds = fileDatastore(ptCloudPath, 'ReadFcn',@pcread);
ptCloudFileNames = pcds.Files;

1-124

Lidar and Camera Calibration

% Square size of the checkerboard in mm.
squareSize = 81;

% Set random seed to generate reproducible results.
rng('default"')

% Extract checkerboard corners from the images.
[imageCorners3d, checkerboardDimension,dataUsed] = ...
estimateCheckerboardCorners3d(imageFileNames,intrinsic.cameraParams,squareSize);

% Remove the unused image files.
imageFileNames = imageFileNames(dataUsed);

% Filter the point cloud files that are not used for detection.
ptCloudFileNames = ptCloudFileNames (dataUsed);

% Extract ROI from the detected checkerboard image corners.
roi = helperComputeR0OI(imageCorners3d,5);

% Extract checkerboard plane from point cloud data.
[lidarCheckerboardPlanes, framesUsed,indices] = detectRectangularPlanePoints(

ptCloudFileNames, checkerboardDimension,RemoveGround=true,R0I=roi);
imageCorners3d = imageCorners3d(:,:,framesUsed);

% Remove ptCloud files that are not used.
ptCloudFileNames = ptCloudFileNames (framesUsed);

% Remove image files that are not used.
imageFileNames = imageFileNames (framesUsed);

[tform,errors] = estimateLidarCameraTransform(lidarCheckerboardPlanes,
imageCorners3d,intrinsic.cameraParams);

helperFuseLidarCamera(imageFileNames,ptCloudFileNames, indices,
intrinsic.cameraParams,tform);

1-125

1 Lidar oolbox Featured Examples

Projected Lidar Points

Colored Lidar Poirts

n i

% Plot the estimated error values.
helperShowError(errors);

1-126

Lidar and Camera Calibration

Translation Error Rotation Error
0.02
0.015

0.01

0.005

Reprojection Error

Summary

This example provides an overview of the lidar-camera calibration workflow and shows you how to
use a rigid transformation matrix to fuse lidar and camera data.

References

[1] Zhou, Lipu, Zimo Li, and Michael Kaess. “Automatic Extrinsic Calibration of a Camera and a 3D
LiDAR Using Line and Plane Correspondences.” In 2018 IEEE/RS] International Conference on
Intelligent Robots and Systems (IROS), 5562-69. Madrid: IEEE, 2018. https://doi.org/10.1109/
IROS.2018.8593660.

[2] Arun, K. S., T. S. Huang, and S. D. Blostein. “Least-Squares Fitting of Two 3-D Point Sets.” IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-9, no. 5 (September 1987): 698-700.
https://doi.org/10.1109/TPAMI.1987.4767965.

1-127

1 Lidar Toolbox Featured Examples

Lidar Point Cloud Semantic Segmentation Using PointSeg Deep
Learning Network

1-128

This example shows how to train a PointSeg semantic segmentation network on 3-D organized lidar
point cloud data.

PointSeg [1 on page 1-0]is a convolutional neural network (CNN) for performing end-to-end
semantic segmentation of road objects based on an organized lidar point cloud. By using methods
such as atrous spatial pyramid pooling (ASPP) and squeeze-and-excitation blocks, the network
provides improved segmentation results. The training procedure shown in this example requires 2-D
spherical projected images as inputs to the deep learning network.

This example uses a highway scene data set collected using an Ouster OS1 sensor. It contains
organized lidar point cloud scans of highway scenes and corresponding ground truth labels for car
and truck objects. The size of the data file is approximately 760 MB.

Download Lidar Data Set

Execute this code to download the highway scene data set. The data set contains 1617 point clouds
stored as pointCloud objects in a cell array. Corresponding ground truth data, which is attached to
the example, contains bounding box information of cars and trucks in each point cloud.

url = 'https://www.mathworks.com/supportfiles/lidar/data/WPI LidarData.tar.gz';

outputFolder = fullfile(tempdir, '"WPI');
lidarDataTarFile = fullfile(outputFolder, '"WPI LidarData.tar.gz');

if ~exist(lidarDataTarFile, 'file')
mkdir(outputFolder);

disp('Downloading WPI Lidar driving data (760 MB)...');
websave(lidarDataTarFile, url);
untar(lidarDataTarFile,outputFolder);

end

% Check if tar.gz file is downloaded, but not uncompressed.

if ~exist(fullfile(outputFolder, 'WPI LidarData.mat'), 'file"')
untar(lidarDataTarFile,outputFolder);

end

lidarData = load(fullfile(outputFolder, 'WPI LidarData.mat'));

groundTruthData = load('WPI LidarGroundTruth.mat"');

Note: Depending on your Internet connection, the download process can take some time. The code
suspends MATLAB® execution until the download process is complete. Alternatively, you can
download the data set to your local disk using your web browser, and then extract WPI LidarData.
To use the file you downloaded from the web, change the outputFolder variable in the code to the
location of the downloaded file.

Download Pretrained Network

Download the pretrained network to avoid having to wait for training to complete. If you want to train
the network, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('trainedPointSegNet.mat','file")

Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

disp('Downloading pretrained network (14 MB)...');
pretrainedURL = 'https://www.mathworks.com/supportfiles/lidar/data/trainedPointSegNet.mat’;
websave('trainedPointSegNet.mat', pretrainedURL);

end

Downloading pretrained network (14 MB)...
Prepare Data for Training

Load Lidar Point Clouds and Class Labels

Use the helperGenerateTrainingData supporting function, attached to this example, to generate
training data from the lidar point clouds. The function uses point cloud and bounding box data to
create five-channel input images and pixel label images. To create the pixel label images, the function
selects points inside the bounding box and labels them with the bounding box class ID. Each training
image is specified as a 64-by-1024-by-5 array:

* The height of each image is 64 pixels.

* The width of each image is 1024 pixels.

* Each image has 5 channels. The five channels specify the 3-D coordinates of the point cloud,

intensity, and range: r = {x% + y2 + 22,

A visual representation of the training data follows.

Number of 7
Channels

Generate the five-channel training images and pixel label images.

imagesFolder
labelsFolder

fullfile(outputFolder, 'images');
fullfile(outputFolder, 'labels');

helperGenerateTrainingData(lidarData, groundTruthData, imagesFolder, labelsFolder);
Preprocessing data 100.00% complete

The five-channel images are saved as MAT files. Pixel labels are saved as PNG files.

Note: Processing can take some time. The code suspends MATLAB® execution until processing is

complete.

1-129

1 Lidar Toolbox Featured Examples

Create ImageDatastore and PixelLabelDatastore

Use the imageDatastore object to extract and store the five channels of the 2-D spherical images
using the helperImageMatReader supporting function, which is a custom MAT file reader. This
function is attached to this example as a supporting file.

imds = imageDatastore(imagesFolder,
'FileExtensions', '.mat',
'ReadFcn', @helperImageMatReader);

Use the pixelLabelDatastore object to store pixel-wise labels from the label images. The object
maps each pixel label to a class name. In this example, cars and trucks are the only objects of
interest; all other pixels are the background. Specify these classes (car, truck, and background) and
assign a unique label ID to each class.

classNames = [
"background"
Ilcarll
"truck"

1;

numClasses = numel(classNames);

% Specify label IDs from 1 to the number of classes.
labelIDs = 1 : numClasses;

pxds = pixellLabelDatastore(labelsFolder, classNames, labellDs);

Load and display one of the labeled images by overlaying it on the corresponding intensity image
using the helperDisplayLidarOverlayImage function, defined in the Supporting Functions on
page 1-0 section of this example.

imageNumber = 225;

% Point cloud (channels 1, 2, and 3 are for location, channel 4 is for intensity).
I = readimage(imds, imageNumber);

labelMap = readimage(pxds, imageNumber);

figure;

helperDisplayLidarOverlayImage(I, labelMap, classNames);
title('Ground Truth');

Ground Truth

truck

background

Prepare Training, Validation, and Test Sets

Use the helperPartitionLidarData supporting function, attached to this example, to split the
data into training, validation, and test sets that contain 970, 216, and 431 images, respectively.

1-130

Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

[imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] = ...
helperPartitionLidarData(imds, pxds);

Use the combine function to combine the pixel and image datastores for the training and validation
data sets.

trainingData = combine(imdsTrain, pxdsTrain);
validationData = combine(imdsVal, pxdsVal);

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Augment the training data using the transform function with custom preprocessing operations
specified by the augmentData function, defined in the Supporting Functions on page 1-0 section of
this example. This function randomly flips the spherical 2-D image and associated labels in the
horizontal direction. Apply data augmentation to only the training data set.

augmentedTrainingData = transform(trainingData, @(x) augmentData(x));

Balance Classes Using Class Weighting

To see the distribution of class labels in the data set, use the countEachLabel function.

tbl = countEachLabel(pxds);
tbl(:,{'Name', 'PixelCount', 'ImagePixelCount'})

ans=3x3 table

Name PixelCount ImagePixelCount
{'background'} 1.0473e+08 1.0597e+08
{'car' } 9.7839e+05 8.4738e+07
{'truck' } 2.6017e+05 1.9726e+07

The classes in this data set are imbalanced, which is a common issue in automotive data sets
containing street scenes. The background class covers more area than the car and truck classes. If
not handled correctly, this imbalance can be detrimental to the learning process because the learning
is biased in favor of the dominant classes.

Use these weights to correct the class imbalance. Use the pixel label counts from the
tbl.PixelCount property and calculate the median frequency class weights.

imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
classWeights = median(imageFreq) ./ imageFreq

classWeights = 3x1I
0.0133

1.1423
1.0000

1-131

1 Lidar Toolbox Featured Examples

1-132

Define Network Architecture

Create a PointSeg network using the createPointSeg supporting function, which is attached to the
example. The code returns the layer graph that you use to train the network.

inputSize = [64 1024 5];
lgraph = createPointSeg(inputSize, classNames, classWeights);

Use the analyzeNetwork (Deep Learning Toolbox) function to display an interactive visualization of
the network architecture.

analyzeNetwork(lgraph)
Specify Training Options

Use the rmsprop optimization algorithm to train the network. Specify the hyperparameters for the
algorithm by using the trainingOptions function.

maxEpochs = 30;
initiallLearningRate= 5e-4;
miniBatchSize = 8;

12reg = 2e-4;

options = trainingOptions('rmsprop',
'InitialLearnRate', initiallLearningRate,
'L2Regularization', 12reg,
'MaxEpochs', maxEpochs,
'MiniBatchSize', miniBatchSize,
'LearnRateSchedule', 'piecewise',
'LearnRateDropFactor', 0.1,
'LearnRateDropPeriod', 10,
'ValidationData', validationData,
'Plots', 'training-progress',
'VerboseFrequency', 20);

Note: Reduce miniBatchSize to control memory usage when training.
Train Network

Use the trainNetwork (Deep Learning Toolbox) function to train a PointSeg network if doTraining
is true. Otherwise, load the pretrained network.

If you train the network, you can use a CPU or a GPU. Using a GPU requires Parallel Computing
Toolbox™ and a CUDA® enabled NVIDIA® GPU. For more information, see “GPU Support by
Release” (Parallel Computing Toolbox).

if doTraining

[net, info] = trainNetwork(trainingData, lgraph, options);
else

pretrainedNetwork = load('trainedPointSegNet.mat');

net = pretrainedNetwork.net;
end

Predict Results on Test Point Cloud

Use the trained network to predict results on a test point cloud and display the segmentation result.

Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

First, read a PCD file and convert the point cloud to a five-channel input image. Predict the labels
using the trained network. Display the figure with the segmentation as an overlay.

ptCloud = pcread('ousterLidarDrivingData.pcd');
I = helperPointCloudToImage(ptCloud);
predictedResult = semanticseg(I, net);

figure;
helperDisplayLidarOverlayImage(I, predictedResult, classNames);
title('Semantic Segmentation Result');

Semantic Segmentation Result

truck
car
background

Use the helperDisplayLidarOverlayPointCloud helper function, defined in the Supporting
Functions on page 1-0 section of this example, to display the segmentation result over the 3-D
point cloud object ptCloud .

figure;

helperDisplayLidarOverlayPointCloud(ptCloud, predictedResult, numClasses);
view([95.71 24.14])

title('Semantic Segmentation Result on Point Cloud');

1-133

1 Lidar Toolbox Featured Examples

1-134

Semantic Segmentation Result on Point Cloud

Evaluate Network

Run the semanticseg function on the entire test set to measure the accuracy of the network. Set
MiniBatchSize to a value of 8 to reduce memory usage when segmenting images. You can increase
or decrease this value depending on the amount of GPU memory you have on your system.

outputLocation = fullfile(tempdir, 'output');
if ~exist(outputLocation, 'dir"')
mkdir(outputLocation);

end

pxdsResults = semanticseg(imdsTest, net,
'MiniBatchSize', 8, ...
'WritelLocation', outputLocation,
'Verbose', false);

The semanticseg function returns the segmentation results on the test data set as a
PixelLabelDatastore object. The function writes the actual pixel label data for each test image in
the imdsTest ohject to the disk in the location specified by the 'WritelLocation' argument.

Use the evaluateSemanticSegmentation function to compute the semantic segmentation metrics
from the test set results.

metrics = evaluateSemanticSegmentation(pxdsResults, pxdsTest, 'Verbose', false);

You can measure the amount of overlap per class using the intersection-over-union (IoU) metric.

Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

The evaluateSemanticSegmentation function returns metrics for the entire data set, for
individual classes, and for each test image. To see the metrics at the data set level, use the
metrics.DataSetMetrics property.

metrics.DataSetMetrics

ans=1x5 table
GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore

0.99209 0.83752 0.67895 0.98685 0.91654

The data set metrics provide a high-level overview of network performance. To see the impact each
class has on the overall performance, inspect the metrics for each class using the
metrics.ClassMetrics property.

metrics.ClassMetrics

ans=3x3 table

Accuracy ToU MeanBFScore
background 0.99466 0.99212 0.98529
car 0.75977 0.50096 0.82682
truck 0.75814 0.54378 0.77119

Although the network overall performance is good, the class metrics show that biased classes (car
and truck) are not segmented as well as the classes with abundant data (background). You can
improve the network performance by training the network on more labeled data containing the car
and truck classes.

Supporting Functions
Function to Augment Data

The augmentData function randomly flips the 2-D spherical image and associated labels in the
horizontal direction.

function out = augmentData(inp)
%saugmentData Apply random horizontal flipping.

out = cell(size(inp));

% Randomly flip the five-channel image and pixel labels horizontally.
I = inp{1};

sz = size(I);

tform = randomAffine2d('XReflection',true);

rout = affineQutputView(sz,tform, 'BoundsStyle', 'centerQutput');

out{1l} = imwarp(I,tform, 'OutputView', rout);
out{2} = imwarp(inp{2},tform, 'OutputView', rout);
end

1-135

1 Lidar Toolbox Featured Examples

1-136

Function to Display Lidar Segmentation Map Overlaid on 2-D Spherical Image

The helperDisplaylLidarOverlayImage function overlays the semantic segmentation map over
the intensity channel of the 2-D spherical image. The function also resizes the overlaid image for
better visualization.

function helperDisplayLidarOverlayImage(lidarImage, labelMap, classNames)
%helperDisplayLidarOverlayImage Overlay labels over the intensity image.

helperDisplayLidarOverlayImage(lidarImage, labelMap, classNames)
displays the overlaid image. lidarImage is a five-channel lidar input.
labelMap contains pixel labels and classNames is an array of label
names.

o° o° o° o o°

N

5 Read the intensity channel from the lidar image.
intensityChannel = uint8(lidarImage(:,:,4));

% Load the lidar color map.
cmap = helperLidarColorMap();

Overlay the labels over the intensity image.
= labeloverlay(intensityChannel, labelMap, 'Colormap',cmap, 'Transparency',0.4);

™o o°

Resize for better visualization.
= imresize(B, 'Scale', [3 1], 'method', 'nearest');
imshow(B);

o o°

% Display the color bar.
helperPixellLabelColorbar(cmap, classNames);
end

Function To Display Lidar Segmentation Map Overlaid on 3-D Point Cloud

The helperDisplayLidarOverPointCloud function overlays the segmentation result over a 3-D
organized point cloud.

function helperDisplayLidarOverlayPointCloud(ptCloud, labelMap, numClasses)
%shelperDisplayLidarOverlayPointCloud Overlay labels over a point cloud object.

helperDisplayLidarOverlayPointCloud(ptCloud, labelMap, numClasses)
displays the overlaid pointCloud object. ptCloud is the organized
3-D point cloud input. labelMap contains pixel labels and numClasses
is the number of predicted classes.

d° o° o° o° o°

sz = size(labelMap);

% Apply the color red to cars.
carClassCar = zeros(sz(1l), sz(2), numClasses, 'uint8');
carClassCar(:,:,1) = 255*ones(sz(1), sz(2), 'uint8');

% Apply the color blue to trucks.
truckClassColor = zeros(sz(l), sz(2), numClasses, 'uint8');
truckClassColor(:,:,3) = 255*ones(sz(1l), sz(2), 'uint8');

% Apply the color gray to the background.
backgroundClassColor = 153*ones(sz(1l), sz(2), numClasses, 'uint8');

% Extract indices from the labels.

Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network

carIndices = labelMap == 'car';
truckIndices = labelMap == 'truck';
backgroundIndices = labelMap == 'background';

% Extract a point cloud for each class.

carPointCloud = select(ptCloud, carIndices, 'OutputSize','full');
truckPointCloud = select(ptCloud, truckIndices, 'OutputSize','full');
backgroundPointCloud = select(ptCloud, backgroundIndices, 'OutputSize','full');

% Apply colors to different classes.
carPointCloud.Color = carClassCar;
truckPointCloud.Color = truckClassColor;
backgroundPointCloud.Color = backgroundClassColor;

% Merge and add all the processed point clouds with class information.
coloredCloud = pcmerge(carPointCloud, truckPointCloud, 0.01);
coloredCloud = pcmerge(coloredCloud, backgroundPointCloud, 0.01);

% Plot the colored point cloud. Set an ROI for better visualization.

ax = pcshow(coloredCloud);

set(ax, 'XLim',[-35.0 35.0], 'YLim',6[-32.0 32.0],'ZLim',[-3 8],
'XColor', 'none', 'YColor', 'none', 'ZColor"', 'none');

set(get(ax, 'parent'), 'units', 'normalized');

end

Function to Define Lidar Colormap
The helperLidarColorMap function defines the colormap used by the lidar data set.

function cmap = helperLidarColorMap()

cmap = [
0.00 0.00 0.00 % background
0.98 0.00 0.00 % car
0.00 0.00 0.98 % truck
1;
end

Function to Display Pixel Label Colorbar

The helperPixellLabelColorbar function adds a colorbar to the current axis. The colorbar is
formatted to display the class names with the color.

function helperPixellLabelColorbar(cmap, classNames)

colormap(gca, cmap);

o°

Add a colorbar to the current figure.
= colorbar('peer', gca);

(@]

o°

Use class names for tick marks.
.TickLabels = classNames;
numClasses = size(classNames, 1);

(@]

% Center tick labels.
c.Ticks = 1/(numClasses * 2):1/numClasses:1;

% Remove tick marks.

1-137

1 Lidar Toolbox Featured Examples

c.TickLength = 0;
end

References

[1] Wang, Yuan, Tianyue Shi, Peng Yun, Lei Tai, and Ming Liu. “PointSeg: Real-Time Semantic
Segmentation Based on 3D LiDAR Point Cloud.” ArXiv:1807.06288 [Cs], September 25, 2018. http://
arxiv.org/abs/1807.06288.

1-138

Detect, Classify, and Track Vehicles Using Lidar

Detect, Classify, and Track Vehicles Using Lidar

This example shows how to detect, classify, and track vehicles by using lidar point cloud data
captured by a lidar sensor mounted on an ego vehicle. The lidar data used in this example is recorded
from a highway-driving scenario. In this example, the point cloud data is segmented to determine the
class of objects using the PointSeg network. A joint probabilistic data association (JPDA) tracker
with an interactive multiple model filter is used to track the detected vehicles.

Overview

The perception module plays an important role in achieving full autonomy for vehicles with an ADAS
system. Lidar and camera are essential sensors in the perception workflow. Lidar is good at
extracting accurate depth information of objects, while camera produces rich and detailed
information of the environment which is useful for object classification.

This example mainly includes these parts:

* Ground plane segmentation

* Semantic segmentation

* Oriented bounding box fitting

» Tracking oriented bounding boxes

The flowchart gives an overview of the whole system.

1-139

1 Lidar Toolbox Featured Examples

1-140

1 5 Channel Input

Q
O

Semantic Segmentation

Oriented Bounding Box
Fitting

!

Bounding Box
Tracking

Load Data

The lidar sensor generates point cloud data either in an organized format or an unorganized format.
The data used in this example is collected using an Ouster OS1 lidar sensor. This lidar produces an
organized point cloud with 64 horizontal scan lines. The point cloud data is comprised of three
channels, representing the x-, y-, and z-coordinates of the points. Each channel is of the size 64-
by-1024. Use the helper function helperDownloadData to download the data and load them into the
MATLAB® workspace.

Detect, Classify, and Track Vehicles Using Lidar

Note: This download can take a few minutes.
[ptClouds,pretrainedModel] = helperDownloadData;

Ground Plane Segmentation

This example employs a hybrid approach that uses the segmentGroundFromLidarData and
pcfitplane functions. First, estimate the ground plane parameters using the
segmentGroundFromLidarData function. The estimated ground plane is divided into strips along
the direction of the vehicle in order to fit the plane, using the pcfitplane function on each strip.
This hybrid approach robustly fits the ground plane in a piecewise manner and handles variations in
the point cloud.

% Load point cloud
ptCloud = ptClouds{1l};
% Define ROI for cropping point cloud

xLimit = [-30,30];
yLimit = [-12,12];
zLimit = [-3,15];

roi = [xLimit,yLimit,zLimit];

% Extract ground plane

[nonGround,ground] = helperExtractGround(ptCloud, roi);

figure;

pcshowpair(nonGround, ground);

legend({'\color{white} Nonground', '\color{white} Ground'}, 'Location', 'northeastoutside');

Monground

Ground

1-141

1 Lidar Toolbox Featured Examples

Semantic Segmentation

This example uses a pretrained PointSeg network model. PointSeg is an end-to-end real-time
semantic segmentation network trained for object classes like cars, trucks, and background. The
output from the network is a masked image with each pixel labeled per its class. This mask is used to
filter different types of objects in the point cloud. The input to the network is five-channel image, that
is x, y, z, intensity, and range. For more information on the network or how to train the network, refer
to the “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network” on page 1-
128 example.

Prepare Input Data

The helperPrepareData function generates five-channel data from the loaded point cloud data.

% Load and visualize a sample frame
frame = helperPrepareData(ptCloud);
figure;

subplot(5,1,1);
imagesc(frame(:,:,1));

title('X channel');

subplot(5,1,2);
imagesc(frame(:,:,2));
title('Y channel');

subplot(5,1,3);
imagesc(frame(:,:,3));
title('Z channel');

subplot(5,1,4);
imagesc(frame(:,:,4));
title('Intensity channel');

subplot(5,1,5);
imagesc(frame(:,:,5))

title('Range channel');

1-142

Detect, Classify, and Track Vehicles Using Lidar

X channel

100 200 300 400 500 00 700 800 00 1000
¥ channel

100 200 300 400 500 00 700 800 00 1000
Z channel

288

100 200 300 400 500 600 00 800 OO0 1000
Intensity channel

S8

100 200 300 400 500 600 00 800 OO0 1000
Range channel

858

100 200 300 400 500 600 00 800 L) 1000

Run forward inference on one frame from the loaded pre-trained network.

if ~exist('net','var')
net = pretrainedModel.net;
end

% Define classes
classes = ["background","car","truck"];

% Define color map
lidarColorMap = [
0.98 0.98 0.00 % unknown
0.01 0.98 0.01 % green color for car
0.01 0.01 0.98 % blue color for motorcycle
I;

% Run forward pass
pxdsResults = semanticseg(frame,net);

% Overlay intensity image with segmented output
segmentedImage = labeloverlay(uint8(frame(:,:,4)),pxdsResults, 'Colormap',lidarColorMap, 'Transparc

% Display results

figure;

imshow(segmentedImage) ;
helperPixelLabelColorbar(lidarColorMap,classes);

1-143

1 Lidar Toolbox Featured Examples

] truck.
1 car
backgraund

Use the generated semantic mask to filter point clouds containing trucks. Similarly, filter point clouds
for other classes.

truckIndices = pxdsResults == 'truck';
truckPointCloud = select(nonGround,truckIndices, 'OutputSize"', 'full');

% Crop point cloud for better display
croppedPtCloud = select(ptCloud, findPointsInROI(ptCloud,roi));
croppedTruckPtCloud = select(truckPointCloud, findPointsInNROI (truckPointCloud, roi));

% Display ground and nonground points

figure;

pcshowpair(croppedPtCloud, croppedTruckPtCloud);

legend({'\color{white} Nonvehicle', '\color{white} Vehicle'}, 'Location', 'northeastoutside');

Momeehicle

Vehicle

Clustering and Bounding Box Fitting

After extracting point clouds of different object classes, the objects are clustered by applying
Euclidean clustering using the pcsegdist function. To group all the points belonging to one single
cluster, the point cloud obtained as a cluster is used as seed points for growing region in nonground

1-144

Detect, Classify, and Track Vehicles Using Lidar

points. Use the findNearestNeighbors function to loop over all the points to grow the region. The
extracted cluster is fitted in an L-shape bounding box using the pcfitcuboid function. These
clusters of vehicles resemble the shape of the letter L when seen from a top-down view. This feature
helps in estimating the orientation of the vehicle. The oriented bounding box fitting helps in
estimating the heading angle of the objects, which is useful in applications such as path planning and
traffic maneuvering.

The cuboid boundaries of the clusters can also be calculated by finding the minimum and maximum
spatial extents in each direction. However, this method fails in estimating the orientation of the
detected vehicles. The difference between the two methods is shown in the figure.

Min. Area Rectangle L-Shape Fitting

[labels,numClusters] = pcsegdist(croppedTruckPtCloud,1);

% Define cuboid parameters
params = zeros(0,9);

1:numClusters
labels == clusterIndex;

for clusterIndex
ptsInCluster

pc = select(croppedTruckPtCloud,ptsInCluster);
location = pc.Location;

x1l = (max(location(:,1)) - min(location(:,1)));
yl = (max(location(:,2)) - min(location(:,2)));
zl = (max(location(:,3)) - min(location(:,3)));

% Filter small bounding boxes
if size(location,l)*size(location,2) > 20 && any(any(pc.Location)) && x1 > 1 && yl > 1
indices = zeros(0,1);

1-145

1 Lidar Toolbox Featured Examples

1-146

objectPtCloud = pointCloud(location);
for 1 = 1l:size(location,1)

seedPoint = location(i,:);

indices(end+1l) = findNearestNeighbors(nonGround, seedPoint,1);
end

% Remove overlapping indices
indices = unique(indices);

% Fit oriented bounding box
model = pcfitcuboid(select(nonGround,indices));
params(end+1,:) = model.Parameters;
end
end

% Display point cloud and detected bounding box

figure;

pcshow(croppedPtCloud.Location, croppedPtCloud.Location(:,3));
showShape('cuboid',params,"Color","red", "Label", "Truck");

Visualization Setup

Use the helperLidarObjectDetectionDisplay class to visualize the complete workflow in one
window. The layout of the visualization window is divided into the following sections:

1 Lidar Range Image: point cloud image in 2-D as a range image

Detect, Classify, and Track Vehicles Using Lidar

2 Segmented Image: Detected labels generated from the semantic segmentation network overlaid
with the intensity image or the fourth channel of the data

3 Oriented Bounding Box Detection: 3-D point cloud with oriented bounding boxes
4 Top View: Top view of the point cloud with oriented bounding boxes

display = helperLidarObjectDetectionDisplay;
Loop Through Data

The helperLidarObjectDetection class is a wrapper encapsulating all the segmentation,
clustering, and bounding box fitting steps mentioned in the above sections. Use the
findDetections function to extract the detected objects.

% Initialize lidar object detector
lidarDetector = helperLidarObjecDetector('Model',net, 'XLimits',xLimit, ...
"YLimit',yLimit, 'ZLimit',zLimit);

% Prepare 5-D lidar data
inputData = helperPrepareData(ptClouds);

% Set random number generator for reproducible results
S = rng(2018);

% Initialize the display
initializeDisplay(display);

numFrames
for count

numel(inputData);
1:numFrames

% Get current data
input = inputData{count};

rangelmage = input(:,:,5);

% Extact bounding boxes from lidar data
[boundingBox, coloredPtCloud, pointLabels] = detectBbox(lidarDetector,input);

% Update display with colored point cloud
updatePointCloud(display,coloredPtCloud);

% Update bounding boxes
updateBoundingBox(display, boundingBox) ;

% Update segmented image
updateSegmentedImage(display, pointLabels, rangeImage);

drawnow('limitrate');
end

1-147

1 Lidar Toolbox Featured Examples

Lidar Range Image

Segmented Image

Oriented Bounding Box Detection

Tracking Oriented Bounding Boxes

In this example, you use a joint probabilistic data association (JPDA) tracker. The time step dt is set
to 0.1 seconds since the dataset is captured at 10 Hz. The state-space model used in the tracker is
based on a cuboid model with parameters, [x, y, z, ¢, I, w, h]. For more details on how to track
bounding boxes in lidar data, see the “Track Vehicles Using Lidar: From Point Cloud to Track List”
(Sensor Fusion and Tracking Toolbox) example. In this example, the class information is provided
using the ObjectAttributes property of the objectDetection object. When creating new
tracks, the filter initialization function, defined using the helper function
helperMultiClassInitIMMFilter uses the class of the detection to set up initial dimensions of
the object. This helps the tracker to adjust bounding box measurement model with the appropriate
dimensions of the track.

Set up a JPDA tracker object with these parameters.

assignmentGate = [10 100]; % Assignment threshold;

confThreshold = [7 10]; % Confirmation threshold for history logi
delThreshold = [2 3]; % Deletion threshold for history logic
Kc = le-5; % False-alarm rate per unit volume

% IMM filter initialization function
filterInitFcn = @helperMultiClassInitIMMFilter;

% A joint probabilistic data association tracker with IMM filter

tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
'TrackLogic', 'History', ...
'"AssignmentThreshold',assignmentGate,...
'ClutterDensity’',Kc, ...
'ConfirmationThreshold',confThreshold,...
'DeletionThreshold',delThreshold, 'InitializationThreshold',0);

1-148

Detect, Classify, and Track Vehicles Using Lidar

allTracks = struct([]);
time = 0;
dt = 0.1;

% Define Measurement Noise
measNoise = blkdiag(0.25*eye(3),25,eye(3));

numTracks = zeros(numFrames,2);

The detected objects are assembled as a cell array of objectDetection (Automated Driving
Toolbox) objects using the helperAssembleDetections function.

display = helperLidarObjectDetectionDisplay;
initializeDisplay(display);

for count = 1l:numFrames
time = time + dt;
% Get current data
input = inputData{count};

rangelmage = input(:,:,5);

% Extact bounding boxes from lidar data
[boundingBox, coloredPtCloud, pointLabels] = detectBbox(lidarDetector,input);

% Assemble bounding boxes into objectDetections
detections = helperAssembleDetections(boundingBox,measNoise,time);

% Pass detections to tracker
if ~isempty(detections)
% Update the tracker
[confirmedTracks,tentativeTracks,allTracks,info] = tracker(detections,time);
numTracks (count,1) = numel(confirmedTracks);
end

% Update display with colored point cloud
updatePointCloud(display, coloredPtCloud);

% Update segmented image
updateSegmentedImage(display, pointLabels, rangeImage);

% Update the display if the tracks are not empty
if ~isempty(confirmedTracks)
updateTracks(display,confirmedTracks);
end

drawnow('limitrate');
end

1-149

1 Lidar Toolbox Featured Examples

Lidar Range Image

Segmented Image

Oriented Bounding Box Detection

Summary

This example showed how to detect and classify vehicles fitted with oriented bounding box on lidar
data. You also learned how to use IMM filter to track objects with multiple class information. The
semantic segmentation results can be improved further by adding more training data.

Supporting Functions
helperPrepareData

function multiChannelData = helperPrepareData(input)
% Create 5-channel data as x, y, z, intensity and range
% of size 64-by-1024-by-5 from pointCloud.

if isa(input, 'cell')
numFrames = numel(input);
multiChannelData = cell(1l, numFrames);
for i = l:numFrames
inputData = input{i};

x = inputData.Location(:,:,1);
y = inputData.Location(:,:,2);
z = inputData.Location(:,:,3);

intensity = inputData.Intensity;
range = sqrt(x.”2 + y."2 + z.72);

multiChannelData{i} = cat(3, x, y, z, intensity, range);
end
else
X = input.Location(:,:,1);

1-150

Detect, Classify, and Track Vehicles Using Lidar

input.Location(:,:,2)
input.Location(:,:,3)

y
z

’
’

intensity = input.Intensity;
range = sqrt(x.”2 + y."2 + z2.72);

multiChannelData = cat(3, x, y, z, intensity, range);
end
end

pixelLabelColorbar

function helperPixellLabelColorbar(cmap, classNames)
% Add a colorbar to the current axis. The colorbar is formatted
% to display the class names with the color.

colormap(gca, cmap)

% Add colorbar to current figure.
c = colorbar('peer', gca);

% Use class names for tick marks.
c.TickLabels = classNames;
numClasses = size(cmap,1l);

% Center tick labels.
c.Ticks = 1/(numClasses*2):1/numClasses:1;

% Remove tick mark.
c.TickLength = 0;
end

helperExtractGround

function [ptCloudNonGround,ptCloudGround] = helperExtractGround(ptCloudIn,roi)
% Crop the point cloud

idx = findPointsInROI(ptCloudIn,roi);
pc = select(ptCloudIn,idx, 'OutputSize', 'full');

% Get the ground plane the indices using piecewise plane fitting
[ptCloudGround, idx] = piecewisePlaneFitting(pc,roi);

nonGroundIdx = true(size(pc.Location,[1,2]));

nonGroundIdx(idx) = false;

ptCloudNonGround = select(pc,nonGroundIdx, 'OutputSize', 'full');
end

function [groundPlane,idx] = piecewisePlaneFitting(ptCloudIn,roi)
groundPtsIdx = ...
segmentGroundFromLidarData(ptCloudIn,
'ElevationAngleDelta’',5, 'InitialElevationAngle',15);
groundPC = select(ptCloudIn,groundPtsIdx, 'OutputSize','full');

% Divide x-axis in 3 regions
segmentlLength = (roi(2) - roi(1))/3;

1-151

1 Lidar Toolbox Featured Examples

x1 = [roi(1),roi(1l) + segmentLength];
x2 = [x1(2),x1(2) + segmentLength];

X3 [x2(2),x2(2) + segmentLength];
roil = [x1,roi(3:end)];
roi2 = [x2,roi(3:end)];
roi3 = [x3,roi(3:end)];

idxBack = findPointsInROI(groundPC,roil);
idxCenter = findPointsInROI(groundPC, roi2);
idxForward = findPointsInROI(groundPC,roi3);

% Break the point clouds in front and back
ptBack = select(groundPC,idxBack, 'OutputSize', 'full');

ptForward = select(groundPC,idxForward, 'OutputSize"', 'full");

[~,inliersForward] = planeFit(ptForward);

[~,inliersBack] = planeFit(ptBack);

idx = [inliersForward; idxCenter; inliersBack];
groundPlane = select(ptCloudIn, idx, 'OutputSize','full');
end

function [plane,inlinersIdx] = planeFit(ptCloudIn)
[~,inlinersIdx, ~] = pcfitplane(ptCloudIn,l1l,[0, 0, 1]);
plane = select(ptCloudIn,inlinersIdx, 'OutputSize', 'full');
end

helperAssembleDetections

function mydetections = helperAssembleDetections(bboxes,measNoise,timestamp)
% Assemble bounding boxes as cell array of objectDetection

mydetections = cell(size(bboxes,1),1);
for i = 1l:size(bboxes,1)
classid = bboxes(i,end);
lidarModel = [bboxes(i,1:3), bboxes(i,end-1), bboxes(i,4:6)];
% To avoid direct confirmation by the tracker, the ClassID is passed as
% ObjectAttributes.
mydetections{i} = objectDetection(timestamp,
lidarModel', 'MeasurementNoise', ...
measNoise, 'ObjectAttributes',struct('ClassID',classid));
end
end

helperDownloadData

function [lidarData, pretrainedModel] = helperDownloadData
outputFolder = fullfile(tempdir, 'WPI');
url = 'https://ssd.mathworks.com/supportfiles/lidar/data/lidarSegmentationAndTrackingData.tar.gz
lidarDataTarFile = fullfile(outputFolder, 'lidarSegmentationAndTrackingData.tar.gz');
if ~exist(lidarDataTarFile, 'file"')
mkdir(outputFolder);
websave(lidarDataTarFile,url);
untar(lidarDataTarFile,outputFolder);
end
% Check if tar.gz file is downloaded, but not uncompressed
if ~exist(fullfile(outputFolder, 'WPI LidarData.mat'),'file"')

1-152

Detect, Classify, and Track Vehicles Using Lidar

untar(lidarDataTarFile,outputFolder);
end
% Load lidar data
data = load(fullfile(outputFolder, 'highwayData.mat"'));
lidarData = data.ptCloudData;

% Download pretrained model
url = 'https://ssd.mathworks.com/supportfiles/lidar/data/pretrainedPointSegModel.mat';
modelFile = fullfile(outputFolder, 'pretrainedPointSegModel.mat"');
if ~exist(modelFile, 'file')
websave (modelFile,url);
end
pretrainedModel = load(fullfile(outputFolder, 'pretrainedPointSegModel.mat'));
end

References

[1] Xiao Zhang, Wenda Xu, Chiyu Dong and John M. Dolan, "Efficient L-Shape Fitting for Vehicle
Detection Using Laser Scanners", IEEE Intelligent Vehicles Symposium, June 2017

[2] Y. Wang, T. Shi, P. Yun, L. Tai, and M. Liu, “Pointseg: Real-time semantic segmentation based on 3d
lidar point cloud,” arXiv preprint arXiv:1807.06288, 2018.

1-153

1 Lidar Toolbox Featured Examples

Feature-Based Map Building from Lidar Data

1-154

This example demonstrates how to process 3-D lidar data from a sensor mounted on a vehicle to
progressively build a map. Such a map is suitable for automated driving workflows such as
localization and navigation. These maps can be used to localize a vehicle within a few centimeters.

Overview

There are different ways to register point clouds. The typical approach is to use the complete point
cloud for registration. “Build a Map from Lidar Data” (Automated Driving Toolbox) example uses this
approach for map building. This example uses distinctive features extracted from the point cloud for
map building.

In this example, you will learn how to:

* Load and visualize recorded driving data.
* Build a map using lidar scans.

Load Recorded Driving Data

The data used in this example represents approximately 100 seconds of lidar, GPS, and IMU data. The
data is saved in separate MAT-files as timetable objects. Download the lidar data MAT file from the
repository and load it into the MATLAB® workspace.

Note: This download can take a few minutes.

baseDownloadURL = ['https://github.com/mathworks/udacity-self-driving-data'

'-subset/raw/master/drive segment 11 18 16/'];
dataFolder = fullfile(tempdir, 'drive segment 11 18 16',filesep);
options = weboptions('Timeout',Inf);

lidarFileName = dataFolder+"lidarPointClouds.mat";

% Check whether the folder and data file already exist or not
folderExists exist(dataFolder, 'dir');
matfilesExist exist(lidarFileName, 'file');

% Create a new folder if it does not exist
if ~folderExists

mkdir(dataFolder);
end

% Download the lidar data if it does not exist
if ~matfilesExist
disp('Downloading lidarPointClouds.mat (613 MB)...');
websave(lidarFileName, baseDownloadURL+"1lidarPointClouds.mat",options);
end

Load the point cloud data saved from a Velodyne® HDL32E lidar sensor. Each lidar scan is stored as
a 3-D point cloud using the pointCloud object. This object internally organizes the data using a Kd-
tree data structure for faster search. The timestamp associated with each lidar scan is recorded in
the Time variable of the timetable object.

% Load lidar data from MAT-file
data = load(lidarFileName);
lidarPointClouds = data.lidarPointClouds;

https://github.com/mathworks/udacity-self-driving-data-subset/
https://github.com/mathworks/udacity-self-driving-data-subset/

Feature-Based Map Building from Lidar Data

% Display first few rows of lidar data
head(lidarPointClouds)

ans=8x1 timetable
Time PointCloud

23:46:10.5115 1x1 pointCloud
23:46:10.6115 1x1 pointCloud
23:46:10.7116 1x1 pointCloud
23:46:10.8117 1x1 pointCloud
23:46:10.9118 1x1 pointCloud
23:46:11.0119 1x1 pointCloud
23:46:11.1120 1x1 pointCloud
23:46:11.2120 1x1 pointCloud

Visualize Driving Data

To understand what the scene contains, visualize the recorded lidar data using the pcplayer object.

% Specify limits for the player

xlimits = [-45 45]; % meters
ylimits = [-45 45];
zlimits = [-10 20];

Create a pcplayer to visualize streaming point clouds from lidar sensor

lidarPlayer = pcplayer(xlimits,ylimits,zlimits);

% Customize player axes labels
xlabel(lidarPlayer.Axes,'X (m)');
ylabel(lidarPlayer.Axes,'Y (m)');
zlabel(lidarPlayer.Axes,"'Z (m)"');
title(lidarPlayer.Axes, 'Lidar Sensor Data');

% Loop over and visualize the data
for 1 = 1:height(lidarPointClouds)

% Extract point cloud
ptCloud = lidarPointClouds.PointCloud(1);

% Update lidar display
view(lidarPlayer,ptCloud);
end

1-155

1 Lidar Toolbox Featured Examples

1-156

4 = [=] 08

File Edit View Insert Tools Desktop Window Help o

NDdde @ 08| KE

Lidar Sensor Data

Use Recorded Lidar Data to Build Map

Lidars can be used to build centimeter-accurate maps which can later be used for in-vehicle
localization. A typical approach to build such a map is to align successive lidar scans obtained from a
moving vehicle and combine them into a single, large point cloud. The rest of this example explores
this approach.

Preprocessing

Take two point clouds corresponding to nearby lidar scans. Every tenth scan is used to speed up
processing and accumulate enough motion between scans.

rng('default');

skipFrames = 10;
frameNum = 100;
fixed lidarPointClouds.PointCloud(frameNum);

moving lidarPointClouds.PointCloud (frameNum+skipFrames);

Process the point cloud to retain structures in the point cloud that are distinctive. These steps are
executed using the helperProcessPointCloud function:

Feature-Based Map Building from Lidar Data

* Detect and remove the ground plane.
* Detect and remove ego vehicle.

These steps are described in more detail in the “Ground Plane and Obstacle Detection Using Lidar”
(Automated Driving Toolbox) example.

fixedProcessed
movingProcessed

helperProcessPointCloud(fixed);
helperProcessPointCloud(moving);

Display the initial and processed point clouds in top-view. Magenta points correspond to the ground
plane and ego vehicle.

hFigFixed
axFixed

= figure;

= axes('Parent',hFigFixed, 'Color',[0 0 0]);
pcshowpair(fixed, fixedProcessed, 'Parent',axFixed);
title(axFixed, 'Segmented Ground and Ego Vehicle');
view(axFixed,2);

Segmented Ground and Ego Vehicle

Downsample the point clouds to improve registration accuracy and algorithm speed.

gridStep = 0.5;
fixedDownsampled
movingDownsampled

pcdownsample(fixedProcessed, "gridAverage",gridStep);
pcdownsample(movingProcessed, "gridAverage",gridStep);

Feature-Based Registration

Align and combine successive lidar scans using feature-based registration as follows:

1-157

1 Lidar Toolbox Featured Examples

» Extract Fast Point Feature Histogram (FPFH) descriptors from each scan using the
extractFPFHFeatures function.

* Identify point correspondences by comparing the descriptors using the pcmatchfeatures
function.

* Estimate the rigid transformation from point correspondences using the
estimateGeometricTransform3D function.

» Align and merge the point cloud with respect to reference point cloud using the estimated
transformation. This is performed using the pcalign function.

% Extract FPFH Features for each point cloud

neighbors = 40;

[fixedFeature, fixedValidInds] = extractFPFHFeatures(fixedDownsampled,
"NumNeighbors',neighbors);

[movingFeature,movingValidInds] = extractFPFHFeatures(movingDownsampled,
'"NumNeighbors',neighbors);

fixedValidPts
movingValidPts

select(fixedDownsampled, fixedValidInds);
select(movingDownsampled,movingValidInds);

% Identify the point correspondences

method = 'Exhaustive';
threshold = 1;
ratio = 0.96;

indexPairs = pcmatchfeatures(movingFeature, fixedFeature,movingValidPts,
fixedValidPts, "Method",method, "MatchThreshold",threshold,
"RejectRatio", ratio);

matchedFixedPts
matchedMovingPts

select(fixedValidPts,indexPairs(:,2));
select(movingValidPts,indexPairs(:,1));

% Estimate rigid transform of moving point cloud with respect to reference

% point cloud

maxDist = 2;

maxNumTrails = 3000;

tform = estimateGeometricTransform3D(matchedMovingPts.Location,
matchedFixedPts.Location, "rigid", "MaxDistance",maxDist,
"MaxNumTrials",maxNumTrails);

% Transform the moving point cloud to the reference point cloud, to
% visualize the alignment before and after registration
movingReg = pctransform(movingProcessed,tform);

% Moving and fixed point clouds are represented by magenta and green colors
hFigAlign = figure;

axAlignl = subplot(1,2,1, 'Color',[0 © O], 'Parent',hFigAlign);
pcshowpair(movingProcessed, fixedProcessed, 'Parent',axAlignl);
title(axAlignl, 'Before Registration');

view(axAlignl,2);

axAlign2 = subplot(1,2,2,'Color',[0 © O], 'Parent',hFigAlign);
pcshowpair(movingReg, fixedProcessed, 'Parent',axAlign2);
title(axAlign2, 'After Registration');

view(axAlign2,2);

1-158

Feature-Based Map Building from Lidar Data

Before Registration After Registration

% Align and merge the point clouds

alignGridStep = 1;

ptCloudAccum = pcalign([fixedProcessed movingProcessed],
[rigid3d tform],alignGridStep);

% Visualize the accumulated point cloud
hFigAccum = figure;

axAccum = axes('Parent',hFigAccum, 'Color',[0 0 01);
pcshow(ptCloudAccum, 'Parent',axAccum);

title(axAccum, 'Accumulated Point Cloud');
view(axAccum,?2);

1-159

1 Lidar Toolbox Featured Examples

Accumulated Point Cloud

Map Generation

Apply preprocessing and feature-based registration steps in a loop over the entire sequence of
recorded data. The result is a map of the environment traversed by the vehicle.

rng('default');

numFrames = height(lidarPointClouds);
accumTform = rigid3d;
pointCloudMap = pointCloud(zeros(0,0,3));

% Specify limits for the player

xlimits = [-200 250]; % meters
ylimits = [-150 500];
zlimits = [-100 1007;

% Create a pcplayer to visualize map
mapPlayer = pcplayer(xlimits,ylimits,zlimits);
title(mapPlayer.Axes, 'Accumulated Map');
mapPlayer.Axes.View = [0 90];

% Loop over the entire data to generate map
for n = l:skipFrames:numFrames-skipFrames

% Get the nth point cloud
ptCloud = lidarPointClouds.PointCloud(n);

% Segment ground and remove ego vehicle

1-160

Feature-Based Map Building from Lidar Data

end

ptProcessed = helperProcessPointCloud(ptCloud);

% Downsample the point cloud for speed of operation
ptDownsampled = pcdownsample(ptProcessed, "gridAverage",gridStep);

% Extract the features from point cloud

[ptFeature,ptValidInds] = extractFPFHFeatures(ptDownsampled,
"NumNeighbors',neighbors);

ptValidPts = select(ptDownsampled,ptValidInds);

if n==1
moving = ptValidPts;
movingFeature = ptFeature;
pointCloudMap = ptValidPts;
else
fixed = moving;
fixedFeature = movingFeature;
moving = ptValidPts;
movingFeature = ptFeature;

% Match the features to find correspondences

indexPairs = pcmatchfeatures(movingFeature, fixedFeature,moving,
fixed, "Method",method, "MatchThreshold",threshold,
"RejectRatio", ratio);

matchedFixedPts select(fixed,indexPairs(:,2))

matchedMovingPts select(moving,indexPairs(:,1)

);

% Register moving point cloud w.r.t reference point cloud
tform = estimateGeometricTransform3D(matchedMovingPts.Location,
matchedFixedPts.Location, "rigid", "MaxDistance",maxDist,

"MaxNumTrials",maxNumTrails);

% Compute accumulated transformation to original reference frame
accumTform = rigid3d(tform.T*accumTform.T);

% Align and merge moving point cloud to accumulated map
pointCloudMap = pcalign([pointCloudMap moving],
[rigid3d accumTform],alignGridStep);
end

% Update map display
view(mapPlayer,pointCloudMap);

1-161

1 Lidar Toolbox Featured Examples

1-162

o | =
File Edit View Insert Tools Desktop Window Help

Ddde @ 08| KE

Accumulated Map

Functions

pcdownsample | extractFPFHFeatures | pcmatchfeatures |
estimateGeometricTransform3D | pctransform | pcalign

Objects
pcplayer | pointCloud
Related Topics

* “Build a Map from Lidar Data” (Automated Driving Toolbox)
* “Ground Plane and Obstacle Detection Using Lidar” (Automated Driving Toolbox)

External Websites

» Udacity Self-Driving Car Data Subset (MathWorks GitHub repository)

https://github.com/mathworks/udacity-self-driving-data-subset/

Detect Vehicles in Lidar Using Image Labels

Detect Vehicles in Lidar Using Image Labels

This example shows you how to detect vehicles in lidar using label data from a co-located camera
with known lidar-to-camera calibration parameters. Use this workflow in MATLAB® to estimate 3-D
oriented bounding boxes in lidar based on 2-D bounding boxes in the corresponding image. You will
also see how to automatically generate ground truth as a distance for 2-D bounding boxes in a
camera image using lidar data. This figure provides an overview of the process.

Point cloud

Lidar data

2-D Camera-Lida

. Transform 3-D
Bounding Frustums
Boxes

Detector 3-D oriented

Bounding Boxes

Clustering

Frustum Proposal

Load Data

This example uses lidar data collected on a highway from an Ouster OS1 lidar sensor and image data
from a front-facing camera mounted on the ego vehicle. The lidar and camera data are approximately
time-synced and calibrated to estimate their intrinsic and extrinsic parameters. For more information
on lidar camera calibration, see “Lidar and Camera Calibration” on page 1-119.

Note: The download time for the data depends on the speed of your internet connection. During the
execution of this code block, MATLAB is temporarily unresponsive.

lidarTarFileUrl
imageTarFileUrl

"https://www.mathworks.com/supportfiles/lidar/data/WPI LidarData.tar.gz’';
"https://www.mathworks.com/supportfiles/lidar/data/WPI ImageData.tar.gz';

outputFolder = fullfile(tempdir, '"WPI');
lidarDataTarFile fullfile(outputFolder, 'WPI LidarData.tar.gz');
imageDataTarFile fullfile(outputFolder, 'WPI ImageData.tar.gz');

if ~exist(outputFolder, 'dir")
mkdir(outputFolder)
end

if ~exist(lidarDataTarFile, 'file')
disp('Downloading WPI Lidar driving data (760 MB)...')
websave(lidarDataTarFile, lidarTarFileUr1)
untar(lidarDataTarFile, outputFolder)

end

% Check if lidar tar.gz file is downloaded, but not uncompressed.
if ~exist(fullfile(outputFolder, 'WPI LidarData.mat'),'file")

1-163

1 Lidar Toolbox Featured Examples

1-164

untar(lidarDataTarFile, outputFolder)
end

if ~exist(imageDataTarFile, 'file"')
disp('Downloading WPI Image driving data (225 MB)...')
websave(imageDataTarFile,imageTarFileUrl)
untar(imageDataTarFile,outputFolder)

end

% Check if image tar.gz file is downloaded, but not uncompressed.

if ~exist(fullfile(outputFolder, 'imageData'), 'dir')
untar(imageDataTarFile,outputFolder)

end

imageDatalLocation = fullfile(outputFolder, 'imageData');
images = imageSet(imageDatalocation);
imageFileNames = images.ImagelLocation;

% Load downloaded lidar data into the workspace
lidarData = fullfile(outputFolder, 'WPI LidarData.mat');
load(lidarData);

% Load calibration data
if ~exist('calib', 'var'")
load('calib.mat"')

end

% Define camera to lidar transformation matrix
camTolLidar = calib.extrinsics;
intrinsics = calib.intrinsics;

Alternatively, you can use your web browser to first download the datasets to your local disk, and
then uncompress the files.

This example uses prelabeled data to serve as ground truth for the 2-D detections from the camera
images. These 2-D detections can be generated using deep learning-based object detectors like
vehicleDetectorYOLOv2 (Automated Driving Toolbox), vehicleDetectorFasterRCNN
(Automated Driving Toolbox), and vehicleDetectorACF (Automated Driving Toolbox). For this
example, the 2-D detections have been generated using the Training Image Labeler app. These 2-D
bounding boxes are vectors of the form: [x y w h], where x and y represent the xy-coordinates of the
top-left corner, and w and h represent the width and height of the bounding box respectively.

Read a image frame into the workspace, and display it with the bounding boxes overlaid.

load imageGTruth.mat
im = imread(imageFileNames{50});
imBbox = imageGTruth{50};

figure
imshow(im)
showShape(' rectangle',imBbox)

Detect Vehicles in Lidar Using Image Labels

3-D Region Proposal

To generate cuboid bounding boxes in lidar from the 2-D rectangular bounding boxes in the image
data, a 3-D region is proposed to reduce the search space for bounding box estimation. The corners of
each 2-D rectangular bounding box in the image are transformed into 3-D lines using camera intrinsic
parameters and camera-to-lidar extrinsic parameters. These 3-D lines form frustum flaring out from
the associated 2-D bounding box in the opposite direction of the ego vehicle. The lidar points that fall
inside this region are segmented into various clusters based on Euclidean distance. The clusters are
fitted with 3-D oriented bounding boxes, and the best cluster is estimated based on the size of these
clusters. Estimate the 3-D oriented bounding boxes in a lidar point cloud, based on the 2-D bounding
boxes in a camera image, by using the bboxCameraToLidar function. This figure shows how 2-D and
3-D bounding boxes relate to each other.

1-165

1 Lidar Toolbox Featured Examples

1-166

Detect Bounding Box in Image

The 3-D cuboids are represented as vectors of the form:[xcen ycen zcen dimx dimy dimz rotx roty rotz],
where xcen, ycen, and zcen represent the centroid coordinates of the cuboid. dimx, dimy, and dimz
represent the length of the cuboid along the x-, y-, and z-axes, and rotx, roty, and rotz represent the
rotation ,in degrees, of the cuboid along the x-, y-, and z-axes.

Use ground truth of the image to estimate a 3-D bounding box in the lidar point cloud.

pc = lidarData{50};

% Crop point cloud to process only front region
roi = [0 70 -15 15 -3 8];

ind = findPointsInROI(pc,roi);

pc = select(pc,ind);

lidarBbox = bboxCameraToLidar(imBbox,pc,intrinsics,
camToLidar, 'ClusterThreshold',2, 'MaxDetectionRange',[1,70]);
figure
pcshow(pc.Location,pc.Location(:,3))
showShape('Cuboid', lidarBbox)
view([-2.90 71.59])

Detect Vehicles in Lidar Using Image Labels

To improve the detected bounding boxes, preprocess the point cloud by removing the ground plane.
Set Up Display

Use the helperLidarCameraObjectsDisplay class to visualize the lidar and image data. This
visualization provides the capability to view the point cloud, image, 3-D bounding boxes on the point
cloud, and 2-D bounding boxes on the image simultaneously. The visualization layout is consists of
these windows:

* Image — Visualize an image and associated 2-D bounding boxes

» Perspective View — Visualize the point cloud and associated 3-D bounding boxes in a perspective
view

» Top View — Visualize the point cloud and associated 3-D bounding boxes from the top view

% Initialize display
display = helperLidarCameraObjectsDisplay;
initializeDisplay(display)

% Update display with point cloud and image
updateDisplay(display, im, pc)

1-167

1 Lidar Toolbox Featured Examples

Top View

Perspective view

Loop Through Data

Run bboxCameraToLidar on 2-D labels over first 200 frames to generate 3-D cuboids

for i = 1:200
% Load point cloud and image
im imread(imageFileNames{i});
pc lidarData{i};

% Load image ground truth
imBbox = imageGTruth{i};

% Remove ground plane

groundPtsIndex = segmentGroundFromLidarData(pc, 'ElevationAngleDelta’, 15,
'InitialElevationAngle',10);

nonGroundPts = select(pc,~groundPtsIndex);

if imBbox

[lidarBbox,~,boxUsed] = bboxCameraToLidar (imBbox,nonGroundPts,intrinsics,
camToLidar, 'ClusterThreshold', 2, 'MaxDetectionRange',[1, 70]);

% Display image with bounding boxes
im = updateImage(display,im,imBbox);

end

% Display point cloud with bounding box

updateDisplay(display,im,pc);

updatelLidarBbox(display, lidarBbox, boxUsed)

drawnow

end

1-168

Detect Vehicles in Lidar Using Image Labels

Top View

Perspective view

Detected bounding boxes by using bounding box tracking, such as joint probabilistic data association
(JPDA). For more information, see “Track Vehicles Using Lidar: From Point Cloud to Track List” on
page 1-224.

Estimate the Distance of Vehicles from the Ego Vehicle

For vehicle safety features such as forward collision warning, accurate measurement of the distance
between the ego vehicle and other objects is crucial. A lidar sensor provides the accurate distance of
objects from the ego vehicle in 3-D, and it can also be used to create ground truth automatically from
2-D image bounding boxes. To generate ground truth for 2-D bounding boxes, use the
projectLidarPointsOnImage function to project the points inside the 3-D bounding boxes onto
the image. The projected points are associated with 2-D bounding boxes by finding the bounding box
with the minimum Euclidean distance from the projected 3-D points. Since the projected points are
from lidar to camera, use the inverse of camera-to-lidar extrinsic parameters. This figure illustrates
the transformation from lidar to camera.

1-169

1 Lidar Toolbox Featured Examples

lidar camera calibration

Y camera lidar

% Initialize display
display = helperLidarCameraObjectsDisplay;
initializeDisplay(display)

% Get lidar to camera matrix
lidarToCam = invert(camToLidar);

% Loop first 200 frames. To loop all frames, replace 200 with numel(imageGTruth)

for i = 1:200
im = imread(imageFileNames{i});
pc = lidarData{i};

imBbox = imageGTruth{i};

% Remove ground plane

groundPtsIndex = segmentGroundFromLidarData(pc, 'ElevationAngleDelta’, 15,
'InitialElevationAngle',10);

nonGroundPts = select(pc,~groundPtsIndex);

if imBbox
[lidarBbox,~,boxUsed] = bboxCameraToLidar(imBbox,nonGroundPts,intrinsics,
camToLidar, 'ClusterThreshold', 2, 'MaxDetectionRange',[1, 70]);
[distance,nearestRect,idx] = helperComputeDistance(imBbox,nonGroundPts, lidarBbox,
intrinsics,lidarToCam);

% Update image with bounding boxes
im = updateImage(display,im,nearestRect,distance);

1-170

Detect Vehicles in Lidar Using Image Labels

updatelLidarBbox(display, lidarBbox)
end

% Update display
updateDisplay(display,im,pc)
drawnow

end

Top View

Perspective view

Supporting Files

helperComputeDistance

function [distance, nearestRect, index] = helperComputeDistance(imBbox, pc, lidarBbox, intrinsic
% helperComputeDistance estimates the distance of 2-D bounding box in a given

image using 3-D bounding boxes from lidar. It also calculates
association between 2-D and 3-D bounding boxes

% Copyright 2020 MathWorks, Inc.
numLidarDetections = size(lidarBbox,1);
nearestRect = zeros(0,4);

distance = zeros(1l,numLidarDetections);
index = zeros(0,1);

for i = 1l:numLidarDetections
bboxCuboid = lidarBbox(i,:);

% Create cuboidModel
model = cuboidModel(bboxCuboid);

1-171

1 Lidar oolbox Featured Examples

% Find points inside cuboid
ind = findPointsInsideCuboid(model,pc);
pts = select(pc,ind);

% Project cuboid points to image
imPts = projectLidarPointsOnImage(pts,intrinsic,lidarToCam);

% Find 2-D rectangle corresponding to 3-D bounding box
[nearestRect(i,:),idx] = findNearestRectangle(imPts,imBbox);
index(end+1) = idx;
% Find the distance of the 2-D rectangle
distance(i) = min(pts.Location(:,1));

end

end

function [nearestRect,idx] = findNearestRectangle(imPts, imBbox)
numBbox = size(imBbox,1);
ratio = zeros(numBbox,1);

% Iterate over all the rectangles
for i = 1:numBbox
bbox = imBbox(i,:);
corners = getCornersFromBbox(bbox);

% Find overlapping ratio of the projected points and the rectangle

idx = (imPts(:,1) > corners(1l,1)) & (imPts(:,1) < corners(2,1)) & ...

(imPts(:,2) > corners(1,2)) & (imPts(:,2) < corners(3,1));
ratio(i) = sum(idx);
end
% Get nearest rectangle
[~,1dx] = max(ratio);
nearestRect = imBbox(idx,:);
end

function cornersCamera = getCornersFromBbox(bbox)
cornersCamera = zeros(4,2);
cornersCamera(l,1:2) bbox(1:2);

LI | I | O | e

(
cornersCamera(2,1:2) bbox(1:2) + [bbox(3),0];
cornersCamera(3,1:2) bbox(1:2) + bbox(3:4);
cornersCamera(4,1:2) bbox(1:2) + [0,bbox(4)];
end

1-172

Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network

Lidar Point Cloud Semantic Segmentation Using SqueezeSegV?2
Deep Learning Network

This example shows how to train a SqueezeSegV2 semantic segmentation network on 3-D organized
lidar point cloud data.

SqueezeSegV2 [1 on page 1-0]is a convolutional neural network (CNN) for performing end-to-end
semantic segmentation of an organized lidar point cloud. The training procedure shown in this
example requires 2-D spherical projected images as inputs to the deep learning network.

This example uses PandaSet data set from Hesai and Scale [2] on page 1-0 . The PandaSet contains
4800 unorganized lidar point cloud scans of the various city scenes captured using the Pandar 64
sensor. The data set provides semantic segmentation labels for 42 different classes including car,
road, and pedestrian.

Download Lidar Data Set

This example uses a subset of PandaSet, that contains 2560 preprocessed organized point clouds.
Each point cloud is specified as a 64-by-1856 matrix. The corresponding ground truth contains the
semantic segmentation labels for 12 classes. The point clouds are stored in PCD format, and the
ground truth data is stored in PNG format. The size of the data set is 5.2 GB. Execute this code to
download the data set.

url = "https://ssd.mathworks.com/supportfiles/lidar/data/Pandaset LidarData.tar.gz";

outputFolder = fullfile(tempdir, "Pandaset");

lidarDataTarFile = fullfile(outputFolder, "Pandaset LidarData.tar.gz");

if ~exist(lidarDataTarFile,"file")
mkdir(outputFolder);
disp("Downloading Pandaset Lidar driving data (5.2 GB)...");
websave(lidarDataTarFile,url);
untar(lidarDataTarFile,outputFolder);

end

% Check if tar.gz file is downloaded, but not uncompressed.

if (~exist(fullfile(outputFolder,"Lidar"),"file"))...

&&(~exist(fullfile(outputFolder, "semanticLabels"),"file"))

untar(lidarDataTarFile,outputFolder);

end

lidarData = fullfile(outputFolder,"Lidar");

labelsFolder = fullfile(outputFolder, "semanticLabels");

Depending on your Internet connection, the download process can take some time. The code
suspends MATLAB® execution until the download process is complete. Alternatively, you can
download the data set to your local disk using your web browser, and then extract

Pandaset LidarData folder. The Pandaset LidarData contains Lidar, Cuboids and
semanticlLabels folders that holds the point clouds, cuboid label and semantic label info
respectively. To use the file you downloaded from the web, change the outputFolder variable in the
code to the location of the downloaded file.

The training procedure for this example is for organized point clouds. For an example showing how to

convert unorganized to organized point clouds, see “Unorganized to Organized Conversion of Point
Clouds Using Spherical Projection” on page 1-265.

1-173

1 Lidar Toolbox Featured Examples

No of
Channels

1-174

Download Pretrained Network

Download the pretrained network to avoid having to wait for training to complete. If you want to train
the network, set the doTraining variable to true.

doTraining = false;
pretrainedNetURL = ...
"https://ssd.mathworks.com/supportfiles/lidar/data/trainedSqueezeSegV2PandasetNet.zip";
if ~doTraining

downloadPretrainedSqueezeSegV2Net (outputFolder,pretrainedNetURL) ;
end

Downloading pretrained model (5 MB)...
Prepare Data for Training

Load Lidar Point Clouds and Class Labels

Use the helperTransformOrganizedPointCloudToTrainingData supporting function, attached
to this example, to generate training data from the lidar point clouds. The function uses point cloud
data to create five-channel input images. Each training image is specified as a 64-by-1856-by-5 array:
» The height of each image is 64 pixels.

* The width of each image is 1856 pixels.

* Each image has five channels. The five channels specify the 3-D coordinates of the point cloud,

intensity, and range: r = \/x2 + y2 + 22,

A visual representation of the training data follows.

intensity ¢

range

Generate the five-channel training images.

imagesFolder = fullfile(outputFolder, "images");
helperTransformOrganizedPointCloudToTrainingData(lidarData, imagesFolder);

Preprocessing data 100% complete

Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network

The five-channel images are saved as MAT files.
Processing can take some time. The code suspends MATLAB® execution until processing is complete.
Create imageDatastore and pixelLabelDatastore

Create an imageDatastore to extract and store the five channels of the 2-D spherical images using
imageDatastore and the helperImageMatReader supporting function, which is a custom MAT file
reader. This function is attached to this example as a supporting file.

imds = imageDatastore(imagesFolder,
"FileExtensions",".mat", .
"ReadFcn",@helperImageMatReader);

Create a pixel label datastore using pixellLabelDatastore to store pixel-wise labels from the pixel
label images. The object maps each pixel label to a class name. In this example, the vegetation,
ground, road, road markings, sidewalk, cars, trucks, other vehicles, pedestrian, road barrier, signs,
and buildings are the objects of interest; all other pixels are the background. Specify these classes
and assign a unique label ID to each class.

classNames = ["unlabelled"
"Vegetation"
"Ground"
"Road"
"RoadMarkings"
"SidewWalk"
"Car"
"Truck"
"OtherVehicle"
"Pedestrian"
"RoadBarriers"
"Signs"
"Buildings"];
numClasses = numel(classNames);
% Specify label IDs from 1 to the number of classes.
labelIDs = 1 : numClasses;
pxds = pixelLabelDatastore(labelsFolder,classNames, labelIDs);

Load and display one of the labeled images by overlaying it on the corresponding intensity image
using the helperDisplayLidarOverlaidImage function, defined in the Supporting Functions on
page 1-0 section of this example.

% Point cloud (channels 1, 2, and 3 are for location, channel 4 is for intensity, and channel 5
I = read(imds);

labelMap = read(pxds);

figure;
helperDisplayLidarOverlaidImage(I,labelMap{1,1},classNames);
title("Ground Truth");

Ground Truth

Bulldings
igns

RoadBarriers

Pedestrian

Othervehicle

Truck

Car

Sidewalk

RoacdMarkings

Road

Ground |
Vegelation
unfabelled

1-175

1 Lidar Toolbox Featured Examples

1-176

Prepare Training, Validation, and Test Sets

Use the helperPartitionLidarSegmentationDataset supporting function, attached to this
example, to split the data into training, validation, and test sets. You can split the training data
according to the percentage specified by the trainingDataPercentage. Divide the rest of the data
in a 2:1 ratio into validation and testing data. Default value of trainingDataPercentage is 0.7.

[imdsTrain,imdsVal,imdsTest,pxdsTrain, pxdsVal,pxdsTest] = ...
helperPartitionLidarSegmentationDataset(imds,pxds,"trainingDataPercentage"”,0.75);

Use the combine function to combine the pixel label and image datastores for the training and
validation data.

trainingData = combine(imdsTrain,pxdsTrain);
validationData = combine(imdsVal, pxdsVal);

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Augment the training data by using the transform function with custom preprocessing operations
specified by the helperAugmentData function, defined in the Supporting Functions on page 1-0
section of this example. This function randomly flips the multichannel 2-D image and associated
labels in the horizontal direction. Apply data augmentation to only the training data set.

augmentedTrainingData = transform(trainingData,@(x) helperAugmentData(x));

Define Network Architecture

Create a standard SqueezeSegV2 [1 on page 1-0] network by using the squeezesegv2Layers
function. In the SqueezeSegV?2 network, the encoder subnetwork consists of FireModules
interspersed with max-pooling layers. This arrangement successively decreases the resolution of the
input image. In addition, the SqueezeSegV2 network uses the focal loss function to mitigate the effect
of the imbalanced class distribution on network accuracy. For more details on how to use the focal
loss function in semantic segmentation, see focalLossLayer.

Execute this code to create a layer graph that can be used to train the network.
inputSize = [64 1856 5];

lgraph = squeezesegv2layers(inputSize,
numClasses, "NumEncoderModules",4, "NumContextAggregationModules",2);

Use the analyzeNetwork (Deep Learning Toolbox) function to display an interactive visualization of
the network architecture.

analyzeNetwork(lgraph);
Specify Training Options

Use the Adam optimization algorithm to train the network. Use the trainingOptions (Deep
Learning Toolbox) function to specify the hyperparameters.

maxEpochs = 30;
initiallLearningRate = le-3;
miniBatchSize = 8;

Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network

12reg = 2e-4;

options = trainingOptions("adam",
"InitialLearnRate",initialLearningRate,
"L2Regularization”,12reg,
"MaxEpochs",maxEpochs,
"MiniBatchSize",miniBatchSize,
"LearnRateSchedule", "piecewise",
“LearnRateDropFactor"”,0.1,
"LearnRateDropPeriod", 10,
"ValidationData",validationData,
"Plots","training-progress",
"VerboseFrequency",20);

Note: Reduce the miniBatchSize value to control memory usage when training.

Train Network

You can train the network yourself by setting the doTraining argument to true. If you train the
network, you can use a CPU or a GPU. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Support by Release” (Parallel
Computing Toolbox). Otherwise, load a pretrained network.

if doTraining

[net,info] = trainNetwork(trainingData, lgraph,options);
else

load(fullfile(outputFolder, "trainedSqueezeSegV2PandasetNet.mat"), "net");
end

Predict Results on Test Point Cloud

Use the trained network to predict results on a test point cloud and display the segmentation result.
First, read a five-channel input image and predict the labels using the trained network.

Display the figure with the segmentation as an overlay.

I = read(imdsTest);

predictedResult = semanticseg(I,net);

figure;
helperDisplayLidarOverlaidImage(I,predictedResult,classNames);
title("Semantic Segmentation Result");

Semantic Segmentation Result
Buildings
signs "~
RoadBarriers
Pedestrian
Othevehicle
uck
Car
Sidewalk
RoadMarkings
Road

Ground |
Vegetation
unlabelled

Use the helperDisplayLabelOverlaidPointCloud function, defined in the Supporting Functions
on page 1-0 section of this example, to display the segmentation result on the point cloud.

figure;
helperDisplayLabelOverlaidPointCloud(I,predictedResult);
view([39.2 90.0 601);

title("Semantic Segmentation Result on Point Cloud");

1-177

1 Lidar Toolbox Featured Examples

1-178

Evaluate Network

Use the evaluateSemanticSegmentation function to compute the semantic segmentation metrics
from the test set results.

outputLocation = fullfile(tempdir, "output");
if ~exist(outputLocation,"dir")
mkdir(outputLocation);
end
pxdsResults = semanticseg(imdsTest,net,
"MiniBatchSize",4, ...
"WritelLocation",outputLocation,
"Verbose", false);
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest, "Verbose", false);

You can measure the amount of overlap per class using the intersection-over-union (IoU) metric.

The evaluateSemanticSegmentation function returns metrics for the entire data set, for
individual classes, and for each test image. To see the metrics at the data set level, use the
metrics.DataSetMetrics property.

metrics.DataSetMetrics

ans=1x5 table
GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore

Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network

0.89724 0.61685 0.54431 0.81806 0.74537

The data set metrics provide a high-level overview of network performance. To see the impact each
class has on the overall performance, inspect the metrics for each class using the
metrics.ClassMetrics property.

metrics.ClassMetrics

ans=13x3 table

Accuracy ToU MeanBFScore
unlabelled 0.94 0.9005 0.99911
Vegetation 0.77873 0.64819 0.95466
Ground 0.69019 0.59089 0.60657
Road 0.94045 0.83663 0.99084
RoadMarkings 0.37802 0.34149 0.77073
SideWalk 0.7874 0.65668 0.93687
Car 0.9334 0.81065 0.95448
Truck 0.30352 0.27401 0.37273
OtherVehicle 0.64397 0.58108 0.47253
Pedestrian 0.26214 0.20896 0.45918
RoadBarriers 0.23955 0.21971 0.19433
Signs 0.17276 0.15613 0.44275
Buildings 0.94891 0.85117 0.96929

Although the overall network performance is good, the class metrics for some classes like
RoadMarkings and Truck indicate that more training data is required for better performance.

Supporting Functions
Function to Augment Data

The helperAugmentData function randomly flips the spherical image and associated labels in the
horizontal direction.

function out = helperAugmentData(inp)

% Apply random horizontal flipping.

out = cell(size(inp));

% Randomly flip the five-channel image and pixel labels horizontally.
I = inp{1};

sz = size(I);

tform = randomAffine2d("XReflection",true);

rout = affineOutputView(sz,tform, "BoundsStyle", "centerOutput");

out{1l} = imwarp(I,tform,"OutputView", rout);
out{2} = imwarp(inp{2},tform,"OutputView", rout);
end

Function to Display Lidar Segmentation Map Overlaid on 2-D Spherical Image

The helperDisplaylLidarOverlaidImage function overlays the semantic segmentation map over
the intensity channel of the 2-D spherical image. The function also resizes the overlaid image for
better visualization.

function helperDisplayLidarOverlaidImage(lidarImage, labelMap, classNames)
% helperDisplayLidarOverlaidImage(lidarImage, labelMap, classNames)

1-179

1 Lidar Toolbox Featured Examples

displays the overlaid image. lidarImage is a five-channel lidar input.
labelMap contains pixel labels and classNames is an array of label
names.

Read the intensity channel from the lidar image.

intensityChannel = uint8(lidarImage(:,:,4));

% Load the lidar color map.

cmap = helperPandasetColorMap;

% Overlay the labels over the intensity image.

B = labeloverlay(intensityChannel, labelMap, "Colormap",cmap, "Transparency",0.4);
% Resize for better visualization.

B = imresize(B, "Scale",[3 11,"method","nearest");

imshow(B);

helperPixellLabelColorbar(cmap,classNames);

end

d° o° o° o°

Function to Display Lidar Segmentation Map Overlaid on 3-D Point Cloud

The helperDisplaylLabelOverlaidPointCloud function overlays the segmentation result over a
3-D organized point cloud.

function helperDisplayLabelOverlaidPointCloud(I,predictedResult)
helperDisplayLabelOverlaidPointCloud(I, predictedResult)

displays the overlaid pointCloud object. I is the 5 channels organized
input image. predictedResult contains pixel labels.

ptCloud = pointCloud(I(:,:,1:3),"Intensity",I(:,:,4));

cmap = helperPandasetColorMap;

B=...

labeloverlay(uint8(ptCloud.Intensity),predictedResult, "Colormap",cmap,"Transparency",0.4);
pc = pointCloud(ptCloud.Location,"Color",B);

figure;

ax = pcshow(pc);

set(ax,"XLim",[-70 70],"YLim",[-70 70]1);

zoom(ax,3.5);

end

o° o° o°

Function to Define Lidar Colormap

The helperPandasetColorMap function defines the colormap used by the lidar data set.

function cmap = helperPandasetColorMap

cmap = [[30 30 30]; % Unlabeled
[0 255 01; % Vegetation
[255 150 255]; % Ground
[255 0 255]; % Road
[255 0 0]; % Road Markings
[90 30 150]; % Sidewalk

[245 150 100]; % Car
[250 80 100]; Truck
[150 60 301; Other Vehicle
[255 255 01; Pedestrian
[0 200 2551; Road Barriers
[170 160 1501]; % Signs
[30 30 255]1; Building
cmap = cmap./255;
end

o o o° o°

o°

1-180

Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network

Function to Display Pixel Label Colorbar

The helperPixelLabelColorbar function adds a colorbar to the current axis. The colorbar is
formatted to display the class names with the color.

function helperPixellLabelColorbar(cmap,classNames)
colormap(gca,cmap);

% Add a colorbar to the current figure.

= colorbar("peer",gca);

Use class names for tick marks.
c.TickLabels = classNames;

numClasses = size(classNames,1);

% Center tick labels.

c.Ticks = 1/(numClasses*2):1/numClasses:1;
% Remove tick marks.

c.TickLength = 0;

end

° 0

Function to Download Pretrained Model

The downloadPretrainedSqueezeSegV2Net function downloads the pretrained model.

function downloadPretrainedSqueezeSegV2Net (outputFolder,pretrainedNetURL)
preTrainedMATFile = fullfile(outputFolder,"trainedSqueezeSegV2PandasetNet.mat");
preTrainedZipFile = fullfile(outputFolder,"trainedSqueezeSegV2PandasetNet.zip");

if ~exist(preTrainedMATFile,"file")
if ~exist(preTrainedZipFile,"file")
disp("Downloading pretrained model (5 MB)...");
websave(preTrainedZipFile,pretrainedNetURL);
end
unzip(preTrainedZipFile,outputFolder);
end
end

References

[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2:
Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from
a LiDAR Point Cloud.” In 2019 International Conference on Robotics and Automation (ICRA), 4376-
82. Montreal, QC, Canada: IEEE, 2019.https://doi.org/10.1109/ICRA.2019.8793495.

[2] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset

1-181

https://doi.org/10.1109/ICRA.2019.8793495
https://scale.com/open-datasets/pandaset

1 Lidar Toolbox Featured Examples

Code Generation for Lidar Point Cloud Segmentation Network

1-182

This example shows how to generate CUDA® MEX code for a deep learning network for lidar
semantic segmentation. This example uses a pretrained SqueezeSegV?2 [1] network that can segment
organized lidar point clouds belonging to three classes (background, car, and truck). For information
on the training procedure for the network, see “Lidar Point Cloud Semantic Segmentation Using
SqueezeSegV2 Deep Learning Network” on page 1-173. The generated MEX code takes a point cloud
as input and performs prediction on the point cloud by using the DAGNetwork object for the
SqueezeSegV?2 network.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.
* CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

* NVIDIA toolkit.
* NVIDIA cuDNN library.
* NVIDIA TensorRT library.

* Environment variables for the compilers and libraries. For details, see “Third-Party Hardware”
(GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Segmentation Network

SqueezeSegV2 is a convolutional neural network (CNN) designed for the semantic segmentation of
organized lidar point clouds. It is a deep encoder-decoder segmentation network trained on a lidar
data set and imported into MATLAB® for inference. In SqueezeSegV2, the encoder subnetwork
consists of convolution layers that are interspersed with max-pooling layers. This arrangement
successively decreases the resolution of the input image. The decoder subnetwork consists of a series
of transposed convolution layers, which successively increase the resolution of the input image. In
addition, the SqueezeSegV?2 network mitigates the impact of missing data by including context
aggregation modules (CAMs). A CAM is a convolutional subnetwork with filterSize of value [7, 7] that
aggregates contextual information from a larger receptive field, which improves the robustness of the
network to missing data. The SqueezeSegV2 network in this example is trained to segment points
belonging to three classes (background, car, and truck).

Code Generation for Lidar Point Cloud Segmentation Network

For more information on training a semantic segmentation network in MATLAB® by using the
Mathworks lidar dataset, see “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep
Learning Network” on page 1-128.

Download the pretrained SqueezeSegV2 Network.
net = getSqueezeSegV2Net();

Downloading pretrained SqueezeSegV2 (2 MB)...

The DAG network contains 238 layers, including convolution, ReLU, and batch normalization layers,
and a focal loss output layer. To display an interactive visualization of the deep learning network
architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(net);

squeezesegv2_ predict Entry-Point Function

The squeezesegv2 predict.m entry-point function, which is attached to this example, takes a
point cloud as input and performs prediction on it by using the deep learning network saved in the
SqueezeSegV2Net.mat file. The function loads the network object from the
SqueezeSegV2Net.mat file into a persistent variable mynet and reuses the persistent variable in
subsequent prediction calls.

type('squeezesegv2 predict.m');

function out = squeezesegv2 predict(in)
s#codegen

A persistent object mynet is used to load the DAG network object. At

the first call to this function, the persistent object is constructed and
setup. When the function is called subsequent times, the same object is
reused to call predict on inputs, thus avoiding reconstructing and
reloading the network object.

o® o of o° o°

o°

Copyright 2020 The MathWorks, Inc.
persistent mynet;

if isempty(mynet)
mynet = coder.loadDeepLearningNetwork('SqueezeSegV2Net.mat');
end

% pass in input
out = predict(mynet,in);

Generate CUDA MEX Code

To generate CUDA MEX code for the squeezesegv2 predict.m entry-point function, create a GPU
code configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a CuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.
Run the codegen command, specifying an input size of [64, 1024, 5]. This value corresponds to the
size of the input layer of the SqueezeSegV?2 network.

cfg = coder.gpuConfig('mex");
cfg.TargetLang = 'C++';

1-183

1 Lidar Toolbox Featured Examples

1-184

cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');
codegen -config cfg squeezesegv2 predict -args {ones(64,1024,5,'uint8')} -report

Code generation successful: View report

To generate CUDA C++ code that takes advantage of NVIDIA TensorRT libraries, in the code, specify
coder.DeepLearningConfig('tensorrt') instead of
coder.DeepLearningConfig('cudnn').

For information on how to generate MEX code for deep learning networks on Intel® processors, see
“Code Generation for Deep Learning Networks with MKL-DNN” (MATLAB Coder).

Prepare Data

Load an organized test point cloud in MATLAB®. Convert the point cloud to a five-channel image for
prediction.

ptCloud = pcread('ousterLidarDrivingData.pcd');
I = pointCloudToImage(ptCloud);

% Examine converted data

whos I
Name Size Bytes C(lass Attributes
I 64x1024x5 327680 uint8

The image has five channels. The (x,)2) point coordinates comprise the first three channels. The
fourth channel contains the lidar intensity measurement. The fifth channel contains the range

information, which is computed as r = yx? + y? + 2%.
Visualize intensity channel of the image.
intensityChannel = I(:,:,4);

figure;

imshow(intensityChannel);
title('Intensity Image');

~

Intensity Image

Run Generated MEX on Data
Call squeezesegv2 predict mex on the five-channel image.
predict scores = squeezesegv2 predict mex(I);

The predict scores variable is a three-dimensional matrix that has three channels corresponding
to the pixel-wise prediction scores for every class. Compute the channel by using the maximum
prediction score to get the pixel-wise labels

[~,argmax] = max(predict scores,[],3);

Code Generation for Lidar Point Cloud Segmentation Network

Overlay the segmented labels on the intensity channel image and display the segmented region.
Resize the segmented output and add a colorbar for better visualization.

classes = [
"background"

cmap = lidarColorMap();

SegmentedImage = labeloverlay(intensityChannel,argmax, 'ColorMap',cmap);
SegmentedImage = imresize(SegmentedImage, 'Scale', [2 1], 'method', 'nearest');
figure;

imshow(SegmentedImage);

N = numel(classes);

ticks = 1/(N*2):1/N:1;

colorbar('TickLabels',cellstr(classes), 'Ticks',ticks, 'TickLength',0, 'TickLabelInterpreter', 'none
colormap (cmap)

title('Semantic Segmentation Result');

Semantic Segmentation Result

truck

car

background

Run Generated MEX Code on Point Cloud Sequence

Read an input point cloud sequence. The sequence contains 10 organized pointCloud frames
collected using an Ouster OS1 lidar sensor. The input data has a height of 64 and a width of 1024, so
each pointCloud object is of size 64-by-1024.

dataFile = 'highwaySceneData.mat';

% Load data in workspace.
load(dataFile);

Setup different colors to visualize point-wise labels for different classes of interest.
% Apply the color red to cars.

carClassCar = zeros(64, 1024, 3, 'uint8');

carClassCar(:,:,1) = 255*ones (64, 1024, 'uint8');

% Apply the color blue to trucks.

truckClassColor = zeros(64, 1024, 3, 'uint8');

truckClassColor(:,:,3) = 255*ones(64, 1024, 'uint8');

% Apply the color gray to background.
backgroundClassColor = 153*ones(64, 1024, 3, 'uint8');

Set the pcplayer function properties to display the sequence and the output predictions. Read the
input sequence frame by frame and detect classes of interest using the model.

1-185

1 Lidar oolbox Featured Examples

xlimits = [0 120.0];
ylimits = [-80.7 80.7];
zlimits = [-8.4 27];

player = pcplayer(xlimits, ylimits, zlimits);

set(get(player.Axes, 'parent'), 'units', 'normalized', 'outerposition',[0 0 1 11);
zoom(get(player.Axes, 'parent'),2);

set(player.Axes, 'XColor', 'none', 'YColor', 'none', 'ZColor', 'none');

for i = 1 : numel(inputData)
ptCloud = inputData{i};

% Convert point cloud to five-channel image for prediction.
I = pointCloudToImage(ptCloud);

% Call squeezesegv2 predict mex on the 5-channel image.
predict scores = squeezesegv2 predict mex(I);

% Convert the numeric output values to categorical labels.
[~,predictedOutput] = max(predict scores,[],3);
predictedOutput = categorical(predictedOutput, 1:3, classes);

% Extract the indices from labels.

carIndices = predictedOutput == 'car';
truckIndices = predictedOutput == 'truck';
backgroundIndices = predictedOutput == 'background';

% Extract a point cloud for each class.

carPointCloud = select(ptCloud, carIndices, 'OutputSize','full');
truckPointCloud = select(ptCloud, truckIndices, 'OutputSize','full');
backgroundPointCloud = select(ptCloud, backgroundIndices, 'OutputSize','full');

% Fill the colors to different classes.
carPointCloud.Color = carClassCar;
truckPointCloud.Color = truckClassColor;
backgroundPointCloud.Color = backgroundClassColor;

% Merge and add all the processed point clouds with class information.
coloredCloud = pcmerge(carPointCloud, truckPointCloud, 0.01);
coloredCloud = pcmerge(coloredCloud, backgroundPointCloud, 0.01);

% View the output.
view(player, coloredCloud);
drawnow;

end

1-186

Code Generation for Lidar Point Cloud Segmentation Network

Helper Functions

The helper functions used in this example follow.
type pointCloudToImage.m

function image = pointCloudToImage(ptcloud)
%spointCloudToImage Converts organized 3-D point cloud to 5-channel
% 2-D image.

image = ptcloud.Location;

image(:,:,4) = ptcloud.Intensity;

rangeData = iComputeRangeData(image(:,:,1),image(:,:,2),image(:,:,3));
image(:,:,5) = rangeData;

% Cast to uint8.

image = uint8(image);
end

function rangeData = iComputeRangeData(xChannel,yChannel, zChannel)
rangeData = sqrt(xChannel.*xChannel+yChannel.*yChannel+zChannel.*zChannel);
end

type lidarColorMap.m

function cmap = lidarColorMap()

cmap = [
0.00 0.00 0.00 % background
0.98 0.00 0.00 % car
0.00 0.00 0.98 % truck

1;
end

1-187

1 Lidar oolbox Featured Examples

References

[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2:
Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from
a LiDAR Point Cloud.” Preprint, submitted September 22, 2018. http://arxiv.org/abs/1809.08495.

1-188

Lidar 3-D Object Detection Using PointPillars Deep Learning

Lidar 3-D Object Detection Using PointPillars Deep Learning

This example shows how to train a PointPillars network for object detection in point clouds.

Lidar point cloud data can be acquired by a variety of lidar sensors, including Velodyne®, Pandar, and
Ouster sensors. These sensors capture 3-D position information about objects in a scene, which is
useful for many applications in autonomous driving and augmented reality. However, training robust
detectors with point cloud data is challenging because of the sparsity of data per object, object
occlusions, and sensor noise. Deep learning techniques have been shown to address many of these
challenges by learning robust feature representations directly from point cloud data. One deep
learning technique for 3-D object detection is PointPillars [1 on page 1-0]. Using a similar
architecture to PointNet, the PointPillars network extracts dense, robust features from sparse point
clouds called pillars, then uses a 2-D deep learning network with a modified SSD object detection
network to estimate joint 3-D bounding boxes, orientations, and class predictions.

Download Lidar Data Set

This example uses a subset of PandaSet [2 on page 1-0] that contains 2560 preprocessed organized

point clouds. Each point cloud covers 360° of view, and is specified as a 64-by-1856 matrix. The point
clouds are stored in PCD format and their corresponding ground truth data is stored in the
PandaSetLidarGroundTruth.mat file. The file contains 3-D bounding box information for three
classes, which are car, truck, and pedestrian. The size of the data set is 5.2 GB.

Download the Pandaset dataset from the given URL using the helperDownloadPandasetData
helper function, defined at the end of this example.

doTraining = false;
outputFolder = fullfile(tempdir, 'Pandaset');

lidarURL = ['https://ssd.mathworks.com/supportfiles/lidar/data/"
'Pandaset LidarData.tar.gz'l];
helperDownloadPandasetData(outputFolder,lidarURL);

Depending on your Internet connection, the download process can take some time. The code
suspends MATLAB® execution until the download process is complete. Alternatively, you can
download the data set to your local disk using your web browser and extract the file. If you do so,
change the outputFolder variable in the code to the location of the downloaded file. The
downloaded file contains Lidar, Cuboids and semanticlLabels folders that holds the point clouds,
cuboid label and semantic label info respectively

Load Data

Create a file datastore to load the PCD files from the specified path using the pcread function.

path = fullfile(outputFolder, 'Lidar');
lidarData = fileDatastore(path, 'ReadFcn',@(x) pcread(x));

Load the 3-D bounding box labels of the car and truck objects.

gtPath = fullfile(outputFolder, 'Cuboids', 'PandaSetLidarGroundTruth.mat');
data = load(gtPath, 'lidarGtLabels"');

Labels = timetable2table(data.lidarGtLabels);

boxLabels = Labels(:,2:3);

Display the full-view point cloud.

1-189

1 Lidar Toolbox Featured Examples

figure

ptCld = read(lidarData);

ax = pcshow(ptCld.Location);

set(ax, 'XLim',[-50 5071, 'YLim',6[-40 40]);
zoom(ax,2.5);

axis off;

reset(lidarData);
Preprocess Data

The PandaSet data consists of full-view point clouds. For this example, crop the full-view point clouds
to front-view point clouds using the standard parameters [1 on page 1-0]. These parameters
determine the size of the input passed to the network. Select a smaller point cloud range along the x,
y, and z-axis to detect objects closer to origin. This also decreases the overall training time of the

network.

xMin = 0.0; % Minimum value along X-axis.
yMin = -39.68; % Minimum value along Y-axis.
zMin = -5.0; % Minimum value along Z-axis.
xMax = 69.12; % Maximum value along X-axis.
yMax = 39.68; % Maximum value along Y-axis.
zMax = 5.0; % Maximum value along Z-axis.
xStep = 0.16; % Resolution along X-axis.
yStep = 0.16; % Resolution along Y-axis.
dsFactor = 2.0; % Downsampling factor.

% Calculate the dimensions for the pseudo-image.

1-190

Lidar 3-D Object Detection Using PointPillars Deep Learning

Xn
Yn

round(((xMax - xMin)/xStep));
round(((yMax - yMin)/yStep));

% Define point cloud parameters.
pointCloudRange = [xMin xMax yMin yMax zMin zMax];
voxelSize = [xStep yStep];

Use the cropFrontViewFromLidarData helper function, attached to this example as a supporting
file, to:

* Crop the front view from the input full-view point cloud.
* Select the box labels that are inside the ROI specified by gridParams.

[croppedPointCloudObj,processedLabels] = cropFrontViewFromLidarData(...
lidarData,boxLabels,pointCloudRange);

Processing data 100% complete

Display the cropped point cloud and the ground truth box labels using the
helperDisplay3DBoxesOverlaidPointCloud helper function defined at the end of the example.

pc = croppedPointCloudObj{1,1};
gtLabelsCar = processedLabels.Car{1};
gtLabelsTruck = processedLabels.Truck{1};

helperDisplay3DBoxesOverlaidPointCloud(pc.Location,gtLabelsCar,...
‘green',gtLabelsTruck, 'magenta', 'Cropped Point Cloud');

Cropped Point Cloud

1-191

1 Lidar Toolbox Featured Examples

reset(lidarData);
Create Datastore Objects for Training

Split the data set into training and test sets. Select 70% of the data for training the network and the
rest for evaluation.

rng(1);
shuffledIndices = randperm(size(processedLabels,1));
idx = floor(0.7 * length(shuffledIndices));

trainData = croppedPointCloudObj (shuffledIndices(1l:idx),:);
testData = croppedPointCloudObj (shuffledIndices(idx+1l:end),:);

trainLabels = processedLabels(shuffledIndices(1l:idx),:);
testlLabels = processedLabels(shuffledIndices(idx+1l:end),:);

So that you can easily access the datastores, save the training data as PCD files by using the
saveptCldToPCD helper function, attached to this example as a supporting file. You can set
writeFiles to "false" if your training data is saved in a folder and is supported by the pcread
function.

writeFiles = true;

datalLocation = fullfile(outputFolder, 'InputData');

[trainData, trainLabels] = saveptCldToPCD(trainData, trainLabels, ...
datalocation,writeFiles);

Processing data 100% complete

Create a file datastore using fileDatastore to load PCD files using the pcread function.

lds = fileDatastore(datalLocation, 'ReadFcn',@(x) pcread(x));

Createa box label datastore using boxLabelDatastore for loading the 3-D bounding box labels.
bds = boxLabelDatastore(trainLabels);

Use the combine function to combine the point clouds and 3-D bounding box labels into a single
datastore for training.

cds = combine(lds,bds);

Data Augmentation

This example uses ground truth data augmentation and several other global data augmentation
techniques to add more variety to the training data and corresponding boxes. For more information
on typical data augmentation techniques used in 3-D object detection workflows with lidar data, see
the “Data Augmentations for Lidar Object Detection Using Deep Learning” on page 1-255.

Read and display a point cloud before augmentation using the
helperDisplay3DBoxesOverlaidPointCloud helper function, defined at the end of the example..
augbata = read(cds);

augptCld = augData{l,1};

auglLabels = augbata{l,2};

augClass = augData{l,3};

labelsCar = auglLabels(augClass=='Car',:);

1-192

Lidar 3-D Object Detection Using PointPillars Deep Learning

labelsTruck = auglLabels(augClass=='Truck',:);

helperDisplay3DBoxesOverlaidPointCloud(augptCld.Location, labelsCar, 'green', ...
labelsTruck, 'magenta’, 'Before Data Augmentation');

Before Data Augmentation

reset(cds);

Use the samplelLidarData function to sample 3-D bounding boxes and their corresponding points
from the training data.

classNames = {'Car', 'Truck'};

sampleLocation = fullfile(outputFolder, 'GTsamples');

[ldsSampled, bdsSampled] = sampleLidarData(cds,classNames, 'MinPoints',20,...
'Verbose',false, 'WritelLocation',samplelLocation);

cdsSampled = combine(ldsSampled, bdsSampled);

Use the pcBbox0Oversample function to randomly add a fixed number of car and truck class objects
to every point cloud. Use the transform function to apply the ground truth and custom data
augmentations to the training data.

numObjects

= [10 10];
cdsAugmented =

transform(cds,@(x)pcBboxOversample(x,cdsSampled, classNames,numObjects));
Apply these additional data augmentation techniques to every point cloud.

* Random flipping along the x-axis
* Random scaling by 5 percent

1-193

1 Lidar oolbox Featured Examples

1-194

* Random rotation along the z-axis from [-pi/4, pi/4]
* Random translation by [0.2, 0.2, 0.1] meters along the x-, y-, and z-axis respectively

cdsAugmented = transform(cdsAugmented,@(x)augmentData(x));

Display an augmented point cloud along with the ground truth augmented boxes using the
helperDisplay3DBoxesOverlaidPointCloud helper function, defined at the end of the example.

augData = read(cdsAugmented);
augptCld = augData{l,1};
auglLabels = augbata{l,?2};
augClass = augData{l,3};

labelsCar = auglLabels(augClass=='Car',:);
labelsTruck = auglLabels(augClass=='Truck',:);

helperDisplay3DBoxesOverlaidPointCloud(augptCld.Location, labelsCar, 'green', ...
labelsTruck, 'magenta’', 'After Data Augmentation');

After Data Augmentation

reset (cdsAugmented) ;
Create PointPillars Object Detector

Use the pointPillarsObjectDetector function to create a PointPillars object detection network.
For more information on PointPillars network, see “Getting Started with PointPillars” on page 4-49.

The diagram shows the network architecture of a PointPillars object detector. You can use the Deep
Network Designer (Deep Learning Toolbox) App to create a PointPillars network.

Lidar 3-D Object Detection Using PointPillars Deep Learning

216x248x1

12000x2 _". Occupancy

216x248x3

Conv Deconv
— Location

216x248x3
— Size
216x248x1

—". Angle

216x248x1

|

Heading
216x248x1

Inputs —’. Classification

I PillarFeature Net
I Scatter Layer

I Backbone Netwerk
Bl Detection Head (SSD)

B
Cony Deconv 53%)
(:;'
%

The pointPillarsObjectDetector function requires you to specify several inputs that
parameterize the PointPillars network:

* Class names

* Anchor boxes

* Point cloud range

* Voxel size

* Number of prominent pillars

* Number of points per pillar

% Define the number of prominent pillars.
P = 12000;

% Define the number of points per pillar.
N = 100;

Estimate the anchor boxes from training data using calculateAnchorsPointPillars helper
function, attached to this example as a supporting file.

anchorBoxes = calculateAnchorsPointPillars(trainLabels);
classNames = trainlLabels.Properties.VariableNames;

Define the PointPillars detector.

detector = pointPillarsObjectDetector(pointCloudRange, classNames,anchorBoxes, ...
"VoxelSize',voxelSize, 'NumPillars',P, '"NumPointsPerPillar',N);

Train Pointpillars Object Detector

Specify the network training parameters using the trainingOptions (Deep Learning Toolbox)
function. Set 'CheckpointPath' to a temporary location to enable saving of partially trained
detectors during the training process. If training is interrupted, you can resume training from the
saved checkpoint.

1-195

1 Lidar Toolbox Featured Examples

1-196

Train the detector using a CPU or GPU. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU. For more information, see “GPU Support by Release” (Parallel
Computing Toolbox). To automatically detect if you have a GPU available, set
executionEnvironment to "auto". If you do not have a GPU, or do not want to use one for
training, set executionEnvironment to "cpu". To ensure the use of a GPU for training, set
executionEnvironment to "gpu".

executionEnvironment = "auto";
if canUseParallelPool
dispatchInBackground = true;
else
dispatchInBackground = false;
end

options = trainingOptions(‘'adam', ...
'Plots', "none", ...
'MaxEpochs',60, ...
'MiniBatchSize',3, ...
'GradientDecayFactor',0.9,...
'SquaredGradientDecayFactor',0.999, ...
'LearnRateSchedule', "piecewise", ...
'InitiallLearnRate',0.0002,...
'LearnRateDropPeriod', 15, ...
'LearnRateDropFactor',0.8, ...
"ExecutionEnvironment',executionEnvironment, ...
'DispatchInBackground',dispatchInBackground,...
'BatchNormalizationStatistics', 'moving',...
'ResetInputNormalization', false,...
'CheckpointPath', tempdir);

Use the trainPointPillarsObjectDetector function to train the PointPillars object detector if
doTraining is "true". Otherwise, load a pretrained detector.

if doTraining
[detector,info] = trainPointPillarsObjectDetector(cdsAugmented,detector,options);
else
pretrainedDetector = load('pretrainedPointPillarsDetector.mat', 'detector"');
detector = pretrainedDetector.detector;
end

Generate Detections

Use the trained network to detect objects in the test data:

* Read the point cloud from the test data.

* Run the detector on the test point cloud to get the predicted bounding boxes and confidence
scores.

» Display the point cloud with bounding boxes using the
helperDisplay3DBoxesOverlaidPointCloud helper function, defined at the end of the
example.

ptCloud = testData{45,1};
gtLabels = testlLabels(45,:);

Specify the confidence threshold to use only detections with
confidence scores above this value.

)
©
)

©

Lidar 3-D Object Detection Using PointPillars Deep Learning

confidenceThreshold = 0.5;
[box,score,labels] = detect(detector,ptCloud, 'Threshold',confidenceThreshold);

labels'=='Car',:);

boxlabelsCar X (
box(labels'=='Truck',:);

= bo

boxlabelsTruck =

% Display the predictions on the point cloud.

helperDisplay3DBoxesOverlaidPointCloud(ptCloud.Location, boxlabelsCar, 'green',...
boxlabelsTruck, 'magenta', 'Predicted Bounding Boxes');

Predicted Bounding Boxes

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of point cloud data to measure the performance.
numInputs = 50;

% Generate rotated rectangles from the cuboid labels.

bds = boxLabelDatastore(testLabels(1l:numInputs,:));

groundTruthData = transform(bds,@(x)createRotRect(x));

% Set the threshold values.

nmsPositiveIoUThreshold = 0.5;

confidenceThreshold = 0.25;

detectionResults = detect(detector,testData(l:numInputs,:),...
'Threshold',confidenceThreshold);

% Convert the bounding boxes to rotated rectangles format and calculate

1-197

1 Lidar Toolbox Featured Examples

% the evaluation metrics.
for i = l:height(detectionResults)
box = detectionResults.Boxes{i};
detectionResults.Boxes{i} = box(:,[1,2,4,5,71);
end

metrics = evaluateDetectionAOS(detectionResults,groundTruthData,...
nmsPositiveIoUThreshold);
disp(metrics(:,1:2))

A0S AP

Car 0.89666 0.89666
Truck 0.76047 0.76047

Helper Functions

function helperDownloadPandasetData(outputFolder,lidarURL)
% Download the data set from the given URL to the output folder.

lidarDataTarFile = fullfile(outputFolder, 'Pandaset LidarData.tar.gz');

if ~exist(lidarDataTarFile, 'file')
mkdir(outputFolder);

disp('Downloading PandaSet Lidar driving data (5.2 GB)...'");
websave(lidarDataTarFile, lidarURL);
untar(lidarDataTarFile,outputFolder);

end

% Extract the file.
if (~exist(fullfile(outputFolder, 'Lidar'),'dir"))...
&&(~exist(fullfile(outputFolder, 'Cuboids"'), 'dir"))
untar(lidarDataTarFile, outputFolder);
end

end

function helperDisplay3DBoxesOverlaidPointCloud(ptCld, labelsCar,carColor,...
labelsTruck, truckColor,titleForFigure)
% Display the point cloud with different colored bounding boxes for different
% classes.
figure;
ax = pcshow(ptCld);
showShape('cuboid',labelsCar, 'Parent',ax, 'Opacity',0.1,...
'Color',carColor, 'LineWidth',0.5);
hold on;
showShape('cuboid',labelsTruck, 'Parent',ax, 'Opacity',0.1,...
'Color',truckColor, 'LineWidth',0.5);
title(titleForFigure);
zoom(ax,1.5);
end

References

[1] Lang, Alex H., Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.
"PointPillars: Fast Encoders for Object Detection From Point Clouds." In 2019 IEEE/CVF Conference

1-198

Lidar 3-D Object Detection Using PointPillars Deep Learning

on Computer Vision and Pattern Recognition (CVPR), 12689-12697. Long Beach, CA, USA: IEEE,
2019. https://doi.org/10.1109/CVPR.2019.01298.

[2] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset.

1-199

https://doi.org/10.1109/CVPR.2019.01298
https://scale.com/open-datasets/pandaset

1 Lidar Toolbox Featured Examples

Aerial Lidar SLAM Using FPFH Descriptors

1-200

This example demonstrates how to implement the simultaneous localization and mapping (SLAM)
algorithm for aerial mapping using 3-D features. The goal of this example is to estimate the trajectory
of a robot and create a point cloud map of its environment.

The SLAM algorithm in this example estimates a trajectory by finding a coarse alignment between
downsampled accepted scans, using fast point feature histogram (FPFH) descriptors extracted at
each point, then applies the iterative closest point (ICP) algorithm to fine-tune the alignment. 3-D
pose graph optimization, from Navigation Toolbox™, reduces the drift in the estimated trajectory.

Create and Visualize Data

Create synthetic lidar scans from a patch of aerial data, downloaded from the OpenTopography
website [1] on page 1-0 . Load a MAT-file containing a sequence of waypoints over aerial data that
defines the trajectory of a robot. Compute lidar scans from the data at each waypoint using the
helperCreateDataset function. The function outputs the lidar scans computed at each waypoint as
an array of pointCloud objects, original map covered by robot and ground truth waypoints.

datafile = 'aerialMap.tar.gz';
wayPointsfile = 'gTruthWayPoints.mat';

% Generate a lidar scan at each waypoint using the helper function
[pClouds,orgMap,gTruthWayPts] = helperCreateDataset(datafile,wayPointsfile);

Visualize the ground truth waypoints on the original map covered by the robot.

% Create a figure window to visualize the ground truth map and waypoints
hFigGT = figure;
axGT = axes('Parent',hFigGT, 'Color', 'black');

% Visualize the ground truth waypoints
pcshow(gTruthWayPts, 'red', 'MarkerSize', 150, 'Parent',axGT)
hold on

% Visualize the original map covered by the robot
pcshow(orgMap, 'MarkerSize',10, 'Parent',axGT)

hold off

% Customize the axis labels
xlabel(axGT,'X (m)")
ylabel(axGT,'Y (m)"')
zlabel(axGT,'Z (m)")

title(axGT, 'Ground Truth Map And Robot Trajectory')

Aerial Lidar SLAM Using FPFH Descriptors

Ground Truth Map And Robot Trajectory

X (m)

Visualize the extracted lidar scans using the pcplayer object.

% Specify limits for the player

xlimits = [-90 90];
ylimits = [-90 90];
zlimits = [-625 -5871;

% Create a pcplayer object to visualize the lidar scans
lidarPlayer = pcplayer(xlimits,ylimits,zlimits);

% Customize the pcplayer axis labels
xlabel(lidarPlayer.Axes, 'X (m)"')
ylabel(lidarPlayer.Axes,'Y (m)"')
zlabel(lidarPlayer.Axes,'Z (m)")
title(lidarPlayer.Axes, 'Lidar Scans')

% Loop over and visualize the data
for 1 = 1:length(pClouds)

% Extract the lidar scan
ptCloud = pClouds(l);

% Update the lidar display
view(lidarPlayer,ptCloud)
pause(0.05)

end

1-201

1 Lidar oolbox Featured Examples

1-202

F o || =R
File Edit View Insert Tools Desktop Window Help o

NDdde @08 | KE

Lidar Scans

Y (m)

X (m)

Set Up Tunable Parameters

Specify the parameters for trajectory and loop closure estimation. Tune these parameters for your
specific robot and environment.

Parameters for Point Cloud Registration

Specify the number of lidar scans to skip between each scan accepted for registration. Since
successive scans have high overlap, skipping a few frames can improve algorithm speed without
compromising accuracy.

skipFrames = 3;

Downsampling lidar scans can improve algorithm speed. The box grid filter downsamples the point
cloud by averaging all points within each cell to a single point. Specify the size for individual cells of a
box grid filter, in meters.

gridStep = 1.5; % in meters

FPFH descriptors are extracted for each valid point in the downsampled point cloud. Specify the
neighborhood size for the k-nearest neighbor (KNN) search method used to compute the descriptors.

Aerial Lidar SLAM Using FPFH Descriptors

neighbors = 60;

Set the threshold and ratio for matching the FPFH descriptors, used to identify point
correspondences.

matchThreshold = 0.1;
matchRatio = 0.97;

Set the maximum distance and number of trails for relative pose estimation between successive
scans.

maxDistance = 1;
maxNumTrails = 3000;

Specify the percentage of inliers to consider for fine-tuning relative poses.

inlierRatio = 0.1;

Specify the size of each cell of a box grid filter, used to create maps by aligning lidar scans.
alignGridStep = 1.2;

Parameters for Loop Closure Estimation

Specify the radius around the current robot location to search for loop closure candidates.
loopClosureSearchRadius = 7.9;

The loop closure algorithm is based on 3-D submap creation and matching. A submap consists of a
specified number of accepted scans hScansPerSubmap. The loop closure algorithm also disregards a
specified number of the most recent scans subMapThresh, while searching for loop candidates.
Specify the root mean squared error (RMSE) threshold LoopClosureThreshold, for accepting a
submap as a match. A lower score can indicate a better match, but scores vary based on sensor data
and preprocessing.

nScansPerSubmap = 3;
subMapThresh = 15;
loopClosureThreshold = 0.6;

Specify the maximum acceptable root mean squared error (RMSE) for the estimation of relative pose
between loop candidates rmseThreshold. Choosing a lower value can result in more accurate loop

closure edges, which has a high impact on pose graph optimization, but scores vary based on sensor
data and preprocessing.

rmseThreshold = 0.6;

Initialize Variables

Create a pose graph, using a poseGraph3D (Navigation Toolbox) object, to store estimated relative
poses between accepted lidar scans.

pGraph = poseGraph3D;

% Default serialized upper-right triangle of a 6-by-6 Information Matrix
infoMat = [1 0 0000100001000610010 1];

Preallocate and initialize the variables required for computation.

1-203

1 Lidar Toolbox Featured Examples

% Allocate memory to store submaps
subMaps = cell(floor(length(pClouds)/(skipFrames*nScansPerSubmap)),1);

% Allocate memory to store each submap pose
subMapPoses = zeros(round(length(pClouds)/(skipFrames*nScansPerSubmap)),3);

% Initialize variables to store accepted scans and their transforms for
% submap creation

pcAccepted = pointCloud.empty(0);

tformAccepted = rigid3d.empty(0);

Initialize variable to store relative poses from the feature-based approach
without pose graph optimization
fpfhTform = rigid3d.empty(0);

)
©
)

©

% Counter to track the number of scans added
count = 1;

Create variables to visualize processed lidar scans and estimated trajectory.

% Set to 1 to visualize processed lidar scans during build process
viewPC = 0;

% Create a pcplayer object to view the lidar scans while
% processing them sequentially, if viewPC is enabled
if viewPC ==

pplayer = pcplayer(xlimits,ylimits,zlimits);

% Customize player axis labels

xlabel (pplayer.Axes,'X (m)"')

ylabel (pplayer.Axes,'Y (m)"')

zlabel(pplayer.Axes,'Z (m)")

title(pplayer.Axes, 'Processed Scans')
end

% Create a figure window to visualize the estimated trajectory
hFigTrajUpdate = figure;

axTrajUpdate = axes('Parent',hFigTrajUpdate, 'Color"', 'black');
title(axTrajUpdate, 'Sensor Pose Trajectory')

Trajectory Estimation and Refinement

The trajectory of the robot is a collection of its poses which consists of its location and orientation in
3-D space. Estimate a robot pose from a 3-D lidar scan instance using the 3-D lidar SLAM algorithm.
Use these processes to perform 3-D SLAM estimation:

Point cloud downsampling

Point cloud registration

Submap creation

Loop closure querying

a A W N R

Pose graph optimization
Iteratively process the lidar scans to estimate the trajectory of the robot.

rng('default') % Set random seed to guarantee consistent results in pcmatchfeatures
for FrameIdx = 1l:skipFrames:length(pClouds)

1-204

Aerial Lidar SLAM Using FPFH Descriptors

Point Cloud Downsampling

Point cloud downsampling can improve the speed of the point cloud registration algorithm.
Downsampling should be tuned for your specific needs.

% Downsample the current scan
curScan = pcdownsample(pClouds(Frameldx), 'gridAverage',gridStep);
if viewPC ==

% Visualize down sampled point cloud
view(pplayer, curScan)
end

Point Cloud Registration

Point cloud registration estimates the relative pose between the current scan and a previous scan.
The example uses these steps for registration:

1
2

Extracts FPFH descriptors from each scan using the extractFPFHFeatures function

Identifies point correspondences by comparing descriptors using the pcmatchfeatures

function
Estimates the relative pose from point correspondences using the
estimateGeometricTransform3D function

Fine-tunes the relative pose using the pcregistericp function

% Extract FPFH features
curFeature = extractFPFHFeatures(curScan, 'NumNeighbors',6neighbors);

if Frameldx ==

% Update the acceptance scan and its tform
pcAccepted(count,1) = curScan;
tformAccepted(count,1l) = rigid3d;

Update the initial pose to the first waypoint of ground truth for
comparison

fpfhTform(count,1) = rigid3d(eye(3),gTruthWayPts(1,:));
else

[
)
[

)

% Identify correspondences by matching current scan to previous scan

indexPairs = pcmatchfeatures(curFeature,prevFeature,curScan,prevScan,
'MatchThreshold',matchThreshold, 'RejectRatio',matchRatio);

matchedPrevPts = select(prevScan,indexPairs(:,2));

matchedCurPts = select(curScan,indexPairs(:,1));

% Estimate relative pose between current scan and previous scan

% using correspondences

tforml = estimateGeometricTransform3D(matchedCurPts.Location,
matchedPrevPts.Location, 'rigid', 'MaxDistance',maxDistance,
'"MaxNumTrials',maxNumTrails);

% Perform ICP registration to fine-tune relative pose
tform = pcregistericp(curScan,prevScan, 'InitialTransform',tforml,
'InlierRatio',inlierRatio);

Convert the rigid transformation to an xyz-position and a quaternion orientation to add it to the pose
graph.

1-205

1 Lidar Toolbox Featured Examples

1-206

relPose = [tform2trvec(tform.T') tform2quat(tform.T')];

% Add relative pose to pose graph
addRelativePose(pGraph, relPose);

Store the accepted scans and their poses for submap creation.

% Update counter and store accepted scans and their poses

count = count + 1;

pcAccepted(count,1l) = curScan;

accumPose = pGraph.nodes(height(pGraph.nodes));

tformAccepted(count,1) = rigid3d((trvec2tform(accumPose(1:3)) * ...
quat2tform(accumPose(4:7)))"');

% Update estimated poses
fpfhTform(count) = rigid3d(tform.T * fpfhTform(count-1).T);
end

Submap Creation

Create submaps by aligning sequential, accepted scans with each other in groups of the specified size
nScansPerSubmap, using the pcalign function. Using submaps can result in faster loop closure
queries.

currSubMapId = floor(count/nScansPerSubmap);
if rem(count,nScansPerSubmap) ==

% Align an array of lidar scans to create a submap
subMaps{currSubMapId} = pcalign(...
pcAccepted((count - nScansPerSubmap + 1):count,1),
tformAccepted((count - nScansPerSubmap + 1):count,1),
alignGridStep);

)

% Assign center scan pose as pose of submap
subMapPoses (currSubMapId,:) = tformAccepted(count -
floor(nScansPerSubmap/2),1).Translation;
end

Loop Closure Query

Use a loop closure query to identify previously visited places. A loop closure query consists of finding
a similarity between the current scan and previous submaps. If you find a similar scan, then the
current scan is a loop closure candidate. Loop closure candidate estimation consists of these steps:

1 Estimate matches between previous submaps and the current scan using the
helperEstimateLoopCandidates function. A submap is a match, if the RMSE between the
current scan and submap is less than the specified value of LloopClosureThreshold. The
previous scans represented by all matching submaps are loop closure candidates.

2 Compute the relative pose between the current scan and the loop closure candidate using the
ICP registration algorithm. The loop closure candidate with the lowest RMSE is the best probable
match for the current scan.

A loop closure candidate is accepted as a valid loop closure only when the RMSE is lower than the
specified threshold.

if currSubMapId > subMapThresh
mostRecentScanCenter = pGraph.nodes(height(pGraph.nodes));

Aerial Lidar SLAM Using FPFH Descriptors

% Estimate possible loop closure candidates by matching current

% scan with submaps

[loopSubmapIds,~] = helperEstimatelLoopCandidates(subMaps,curScan,
subMapPoses,mostRecentScanCenter, currSubMapId, subMapThresh,
loopClosureSearchRadius, loopClosureThreshold);

if ~isempty(loopSubmapIds)
rmseMin = inf;

% Estimate the best match for the current scan from the matching submap ids
for k = 1:length(loopSubmapIds)

% Check every scan within the submap
for kf = 1:nScansPerSubmap
probableLoopCandidate = ...
loopSubmapIds(k)*nScansPerSubmap - kf + 1;
[pose Tform,~,rmse] = pcregistericp(curScan,
pcAccepted(probableLoopCandidate));

% Update the best loop closure candidate

if rmse < rmseMin
rmseMin = rmse;
matchingNode = probableLoopCandidate;
Pose = [tform2trvec(pose Tform.T')

tform2quat(pose Tform.T')];
end
end
end

% Check if loop closure candidate is valid
if rmseMin < rmseThreshold

% Add relative pose of loop closure candidate to pose graph
addRelativePose(pGraph,Pose,infoMat,matchingNode,
pGraph.NumNodes) ;
end
end
end

% Update previous point cloud and feature
prevScan = curScan;
prevFeature = curFeature;

% Visualize the estimated trajectory from the accepted scan.
show(pGraph, "IDs', 'off"', 'Parent',axTrajUpdate);
drawnow

end

1-207

1 Lidar Toolbox Featured Examples

1-208

Aerial Lidar SLAM Using FPFH Descriptors

wh M

100 | 1

-120 '
-40 -20 0

Pose Graph Optimization

Reduce the drift in the estimated trajectory by using the optimizePoseGraph (Navigation Toolbox)
function. In general, the pose of the first node in the pose graph represents the origin. To compare
the estimated trajectory with the ground truth waypoints, specify the first ground truth waypoint as
the pose of the first node.

pGraph = optimizePoseGraph(pGraph, 'FirstNodePose', [gTruthWayPts(1,:) 1 0 0 0]);
Visualize Trajectory Comparisons

Visualize the estimated trajectory using the features without pose graph optimization, the features
with pose graph optimization, and the ground truth data.

% Get estimated trajectory from pose graph
pGraphTraj = pGraph.nodes;

% Get estimated trajectory from feature-based registration without pose
% graph optimization
fpfhEstimatedTraj = zeros(count,3);
for i = 1l:count
fpfhEstimatedTraj(i,:) = fpfhTform(i).Translation;
end

% Create a figure window to visualize the ground truth and estimated
% trajectories
hFigTraj = figure;

1-209

1 Lidar oolbox Featured Examples

axTraj = axes('Parent',hFigTraj, 'Color', 'black');

plot3(fpfhEstimatedTraj(:,1),fpfhEstimatedTraj(:,2),fpfhEstimatedTraj(:,3),
'r*', 'Parent',axTraj)

hold on

plot3(pGraphTraj(:,1),pGraphTraj(:,2),pGraphTraj(:,3),'b.", 'Parent',axTraj)

plot3(gTruthWayPts(:,1),gTruthWayPts(:,2),gTruthWayPts(:,3),"'go"', 'Parent',axTraj)

hold off

axis equal

view(axTraj,2)

xlabel(axTraj,'X (m)")

ylabel(axTraj,'Y (m)"')

zlabel(axTraj,'Z (m)")

title(axTraj, 'Trajectory Comparison')

legend(axTraj, 'Estimated trajectory without pose graph optimization',
'Estimated trajectory with pose graph optimization',
'Ground Truth Trajectory', 'Location', 'bestoutside')

Trajectory Comparison

i * Estimated trajectory without pose graph optimization
o3 = Estimated trajectory with pose graph optimization
2 Ground Truth Trajectory

E
>
20}
40 =
60} =
40 0 10 20
X (m)

Build and Visualize Generated Map

Transform and merge lidar scans using estimated poses to create an accumulated point cloud map.

% Get the estimated trajectory from poses
estimatedTraj = pGraphTraj(:,1:3);

% Convert relative poses to rigid transformations
estimatedTforms = rigid3d.empty(0);
for idx=1:pGraph.NumNodes

pose = pGraph.nodes(idx);

1-210

Aerial Lidar SLAM Using FPFH Descriptors

rigidPose = rigid3d((trvec2tform(pose(1l:3)) * quat2tform(pose(4:7)))"');
estimatedTforms(idx,1l) = rigidPose;
end

% Create global map from processed point clouds and their relative poses
globalMap = pcalign(pcAccepted,estimatedTforms,alignGridStep);

% Create a figure window to visualize the estimated map and trajectory
hFigTrajMap = figure;

axTrajMap = axes('Parent',hFigTrajMap, 'Color', 'black');
pcshow(estimatedTraj, 'red', 'MarkerSize', 150, 'Parent',axTrajMap)

hold on

pcshow(globalMap, 'MarkerSize', 10, 'Parent',axTrajMap)

hold off

% Customize axis labels
xlabel(axTrajMap, 'X (m)")
ylabel(axTrajMap, 'Y (m)")
zlabel(axTrajMap,'Z (m)"')
title(axTrajMap, 'Estimated Robot Trajectory And Generated Map')

Estimated Robot Trajectory And Generated Map

Visualize the ground truth map and the estimated map.

% Create a figure window to display both the ground truth map and estimated map
hFigMap = figure('Position',[0 O 700 400]);

axMapl = subplot(1,2,1, 'Color', 'black', 'Parent',hFigMap);

axMapl.Position = [0.08 0.2 0.4 0.55];

pcshow(orgMap, 'Parent',axMapl)

1-211

1 Lidar Toolbox Featured Examples

xlabel(axMapl, 'X (
ylabel(axMapl, 'Y (
zlabel(axMapl, 'Z (
title(axMapl, 'Grou

axMap2 = subplot(1,2,2, 'Color', 'black', 'Parent',hFigMap);
axMap2.Position = [0.56 0.2 0.4 0.55];

pcshow(globalMap, 'Parent',axMap2)

xlabel (axMap2,'X (m)"')

ylabel(axMap2,'Y (m)"')

zlabel(axMap2,'Z (m)")

title(axMap2, 'Estimated Map')

Ground Truth Map Estimated Map

See Also
Functions

readPointCloud | insertPointCloud (Navigation Toolbox) | rayIntersection (Navigation
Toolbox) | addRelativePose (Navigation Toolbox) | optimizePoseGraph (Navigation Toolbox) |
show (Navigation Toolbox) | extractFPFHFeatures | pcmatchfeatures |
estimateGeometricTransform3D | pcdownsample | pctransform | pcregistericp | pcalign
| tform2trvec (Navigation Toolbox) | tform2quat (Navigation Toolbox)

Objects

lasFileReader | pointCloud | pcplayer | occupancyMap3D (Navigation Toolbox) |
poseGraph3D (Navigation Toolbox) | rigid3d

1-212

Aerial Lidar SLAM Using FPFH Descriptors

References

[1] Starr, Scott. "Tuscaloosa, AL: Seasonal Inundation Dynamics and Invertebrate Communities."
National Center for Airborne Laser Mapping, December 1, 2011. OpenTopography(https://doi.org/
10.5069/G9SF2T3K).

1-213

https://doi.org/10.5069/G9SF2T3K
https://doi.org/10.5069/G9SF2T3K

1 Lidar Toolbox Featured Examples

Collision Warning Using 2-D Lidar

1-214

This example shows how to detect obstacles and warn of possible collisions using 2-D lidar data.
Overview

Logistics warehouses are increasingly mounting 2-D lidars on automatic guided vehicles (AGV) for
navigation purposes, due to the affordability, long range, and high resolution of the sensor. The
sensors assist in collision detection, which is an important task for the safe navigation of AGVs in
complex environments. This example shows how to represent a robot workspace populated with
obstacles, generate 2-D lidar data, detect obstacles, and provide a warning before an impending
collision.

Create a Warehouse Map

To represent the environment of the robot workspace, define a binaryOccupancyMap (Navigation
Toolbox) object that contains the floor plan of the warehouse. Each cell in the occupancy grid has a
logical value. An occupied location is represented as 1 and a free location is represented as 0. You
can use the occupancy information to generate synthetic 2-D lidar data.

Add obstacles to the map near to the defined route of AGV.

% Create a binary warehouse map and place obstacles at defined locations
map = helperCreateBinaryOccupancyMap;

% Visualize map with obstacles and AGV

figure

show(map)

title('Warehouse Floor Plan With Obstacles and AGV')

% Add AGV to the map
pose = [5 40 0];
helperPlotRobot(gca,pose);

Collision Warning Using 2-D Lidar

Warehouse Floor Plan With Obstacles and AGV
8O

70

60

50

40

Y [meters]

30
20

10

0 10 20 30 40 50 60 70 B0 90 100
X [meters]

Simulate 2-D Lidar Sensor

Simulate 2-D lidar sensor using a rangeSensor object to gather lidar readings for the generated
map. Load a MAT-file containing the predefined waypoints of the AGV into the workspace. Use the
simulated lidar sensor to return range and angle readings for a pose of the AGV, and then use the
ranges and angles to generate a LidarScan object that contains the 2-D lidar scan.

% Simulate lidar sensor and set the detection angles to [-pi/2 pi/2]
lidar = rangeSensor;
lidar.HorizontalAngle = [-pi/2 pi/2];

% Set min and max values of the detectable range of the sensor in meters
lidar.Range = [0 5];

% Load waypoints through which AGV moves
load waypoints.mat
traj = waypointsMap;

% Select a waypoint to visualize scan data
Vehiclepose = traj(350,:);

% Generate lidar readings
[ranges,angles] = lidar(Vehiclepose,map);

% Store and visualize 2-D lidar scan

scan = lidarScan(ranges,angles);
plot(scan)

1-215

1 Lidar Toolbox Featured Examples

1-216

title('Ego View')
helperPlotRobot(gca, [0 0 Vehiclepose(3)1);

=4
T
=
-
=
L——-—u-v-uiv"
1

R

Set Up Visualization

Set up a figure window that displays AGV movement in the warehouse, the associated lidar scans of
the environment, displays obstacles as filled circles in bird's eye view, and color-coded collision
warning messages. The color used for each warning signifies the likelihood of a collision based on the
detection area zone that the obstacle occupies at that waypoint.

% Set up display
display = helperVisualizer;

% Plot warehouse map in the display window
hRobot = plotBinaryMap(display,map,pose);

Collision Warning Based on Zones
Collision warnings only appear if an obstacle falls within the detection area of the AGV.
Define the Detection Area

Create a custom detectable area with different colors, shapes, and modify the area of color regions on
figure GUI. Run the below portion of code and modify the polygon handles to accommodate your
requirements of the detection area. The code below creates 3 polygon handles of semi-circular
regions with a radius of 5, 2, 1 in meters and AGV is positioned at [0 0]. Modify the radius or change
the polygon objects to create a custom detection area.

Collision Warning Using 2-D Lidar

figure

detAxes = gca;

title(detAxes, 'Define Detection Area')
axis(detAxes,[-2 10 -2 4])
xlabel(detAxes, 'X")
ylabel(detAxes, 'Y")

axis(detAxes, 'equal')

grid(detAxes, 'minor")

t = linspace(-pi/2,pi/2,30)";

% Specify color values - white, yellow, orange, red
colors =[111; 110;10.50; 10 01;

% Specify radius in meters
radius = [5 2 1];

% Create a 3x1 matrix of type Polygon
detAreaHandles = repmat(images.roi.Polygon,[3 11);

pos = [cos(t) sin(t)]*radius(l);

pos = [0 -2; pos(14:17,:); 0 21;

detAreaHandles (1) = drawpolygon(
'Parent',detAxes,
'InteractionsAllowed', 'reshape’,
'Position',pos, ...
'StripeColor', 'black’,
"Color',colors(2,:));

pos [cos(t) sin(t)]*radius(2);

pos [0 -1.5; pos(12:19,:); 0 1.5];

detAreaHandles(2) = drawpolygon(
'Parent',detAxes,
'InteractionsAllowed', 'reshape’,
'Position',pos, ...
'StripeColor', 'black’,
'"Color',colors(3,:));

pos [cos(t) sin(t)]*radius(3);

pos [0 -1; pos(10:21,:); 0 11;

detAreaHandles(3) = drawpolygon(
'Parent',detAxes,
'InteractionsAllowed', 'reshape’,
'Position',pos, ...
'StripeColor', 'black’,
'Color',colors(4,:));

% Pausing for the detection area window to load
pause(2)

To save the created detection area, run the helperSaveDetectionArea function. Use the axes
handle of the figure with the detection area polygons and the associated detAreaHandles variable
as input arguments. The function outputs the detection area, as a matrix of datatype uint8, and a
bounding box. The blue rectangle around the detection area represents the bounding box.

% Axes of the figure window containing the polygon handles

axesDet = gca;

[detArea,bbox] = helperSaveDetectionArea(axesDet,detAreaHandles);

1-217

1 Lidar Toolbox Featured Examples

Define Detection Area

Make detection area transparent by scaling colors
alphadata = double(detArea ~= 0)*0.5;
3

o° o°

x3 = getDetectionAreaAxes(display);
imagesc(ax3, [bbox(1l) (bbox(1l)+bbox(3))],
-[bbox(2) (bbox(2)+bbox(4))1,

detArea);

a
h

colormap(ax3,colors);

% Plot detection area
plotObstacleDisplay(display)

Run Simulation

The detection area is divided into three levels as: red, orange, and yellow. Each region is associated
with a specific degree of danger:

* Red — Collision is imminent
* Orange — High chance of collision
* Yellow — Apply caution measures

Obstacles that do not fall within the detection range are at safe distance from AGV. These are the
primary steps involved in collision warning:

* Simulate 2-D lidar and extract point cloud data.
* Segment point cloud data into obstacle clusters.

1-218

Collision Warning Using 2-D Lidar

)
“©

Loop over each obstacle to check for possible collisions.
Issue a warning based on the danger level of obstacles.
Display obstacles close to the AGV.

Move AGV through waypoints

for ij = 27:size(traj,1)

currentPose = traj(ij,:);

Simulate 2-D Lidar and Extract Point Cloud Data

Gather lidar readings of the map using the simulated sensor. Load the current pose of the AGV from
the waypoints file. Use the rangeSensor object you created to get range and angle measurement.

% Retrieve lidar scans
[ranges,angles] = lidar(currentPose,map);
scan = lidarScan(ranges,angles);

% Store 2-D scan as point cloud
cart = scan.Cartesian;
cart(:,3) = 0;

pc = pointCloud(cart);

Segment Point Cloud Data into Obstacle Clusters

Use the pcsegdist function to segment the scanned point cloud into clusters, using minimum
euclidean distance between the points as the segmentation criterion.

% Segment point cloud into clusters based on euclidean distance

minDistance = 0.9;
[labels,numClusters] = pcsegdist(pc,minDistance);

Update Visualization Window with Map and Scan Data

% Update display map
updateMapDisplay(display, hRobot, currentPose);

% Plot 2-D lidar scans
plotLidarScan(display,scan,currentPose(3));

% Delete obstacles from last scan to plot next scan line
if exist('sc','var')

delete(sc)

clear sc
end

Loop Over Each Obstacle to Find the Likelihood of Collisions

Loop through the clusters based on their labels, to extract the points located inside them.

nearxy = zeros(numClusters,2);
maxlevel = -inf;
% Loop through all the clusters in pc
for i = 1l:numClusters
¢ = find(labels == i);
% XY coordinate extraction of obstacle
xy = pc.Location(c,1:2);

Convert the world position of each obstacle into the camera coordinate system.

1-219

1 Lidar Toolbox Featured Examples

1-220

Convert to normalized coordinate system (0-> minimum location of detection
area, 1l->maximum position of detection area)

o o°

a = [xy(:,1) xy(:,2)] - repmat(bbox([1 2]),[size(xy,1) 1]);
b = repmat(bbox([3 4]),[size(xy,1) 11);
Xy org = a./b;

% Coordinate system (0, 0)->(0, 0), (1, 1)->(width, height) of detArea
idx = floor(xy org.*repmat([size(detArea,2) size(detArea,l)],[size(xy org,1) 11));

Extract the indices of obstacle points that lie in the detection area.

% Extracts as an index only the coordinates in detArea
validIdx = 1 <= idx(:,1) & 1 <= idx(:,2) & ...
idx(:,1) <= size(detArea,2) & idx(:,2) <= size(detArea,l);

For each valid obstacle point, find the associated value in the detection matrix. The maximum value of
all associated points in the detection matrix determines the level of danger represented by that
obstacle. Display a colored circle based on the danger level of the obstacle in the Warning Color
pane of the visualization window.

% Round the index and get the level of each obstacle from detArea
cols = idx(validIdx,1);

rows = idx(validIdx,2);

levels = double(detArea(sub2ind(size(detArea),rows,cols)));

if ~isempty(levels)
level = max(levels);
maxlevel = max(maxlevel, level);
xyInds = find(validIdx);
xyInds = xyInds(levels == level);
% Get the nearest coordinates of obstacle in detection area
nearxy(i,:) = helperNearObstacles(xy(xyInds,:));
else
% Get the nearest coordinates of obstacle in the cluster
nearxy(i,:) = helperNearObstacles(xy);
end
end
Display a warning color representing the danger level. If the
obstacle does not fall in the detection area, do not display a color.
switch maxlevel
% Red region
case 3
circleDisplay(display,colors(4,:))
% Orange region
case 2
circleDisplay(display,colors(3,:))
% Yellow region
case 1
circleDisplay(display,colors(2,:))
% Default case
otherwise
circleDisplay(display,[]1)

[
“©
[

“©

end

Collision Warning Using 2-D Lidar

Display Points of Obstacles Closest to the AGV

As most of the obstacles in the warehouse are linear and long, display only the point of each obstacle
cluster closest to the AGV. Obstacles display as filled circles in the Bird's-Eye Plot pane of the

visualization window.

for i = 1:numClusters
% Display obstacles if exist in the mentioned range of axes3

sc(i,:) = displayObstacles(display,nearxy(i,:));
end
updateDisplay(display)
pause(0.01)

end
Binary Ococupancy Map Bird's-Eve Plot
o Warehouse Floor Plan Display obstacles
-5
I
[TTTT1 |
&0 | ® Obstacle
w |
5 |
1] .
EY 'm 3 .
‘_' il
-~ o 0
20 E m E
[11111 S
0 |
0 50 100 |
X [meters]) I
2.0 Data |
2-D lidar scan 3
5 T L™ I:l 7] 1 U
at X (meters)
Warning Color
EF 3‘
=2
1t
0 =7
5 1] 5
Y (m)

1-221

1 Lidar Toolbox Featured Examples

1-222

Binary Occupancy Magp Bird's-Eye Plot
ag Warehouse Floor Plan Display obstacles
-5 . :
I
[TTTTI |
&0 | ® Obstacle
w |
£ |
g 40 o
- o L
20 C E
NN S
d |
0 50 100 |
X [meters] I
2-0 Data |
2-D lidar scan 5 - :
3 - - 0 5 10
X (meters)
YWiarning Color
E [p——
-
-5 :
0 1 2 3 B 5

Supporting Files
helperCreateBinaryOccupancyMap creates a warehouse map of the robot workspace

function map = helperCreateBinaryOccupancyMap()
% helperCreateBinaryOccupancyMap Creates a warehouse map with specific
% resolution passed as arguments to binaryOccupancyMap

map binaryOccupancyMap(100,80,1);
occ zeros(80,100);
occ(l,:) = 1;

occ(end,:) = 1;
occ([1:30,51:80],1) = 1;
occ([1:30,51:80],end) =
0cc(40,20:80) = 1;
occ(28:52,[20:21 32:33 44:45 56:57 68:69 80:81]) = 1;
occ(1:12,[20:21 32:33 44:45 56:57 68:69 80:81]1) = 1;
occ(end-12:end, [20:21 32:33 44:45 56:57 68:69 80:81]) = 1;

1;

% Set occupancy value of locations
setOccupancy(map,occ);

% Add obstacles to the map at specific locations. Inputs to

% helperAddObstacle are obstacleWidth, obstacleHeight and obstaclelLocation.
helperAddObstacle(map,5,5,[10,30]);

helperAddObstacle(map,5,5,[20,17]1);

helperAddObstacle(map,5,5,[40,171);

end

Collision Warning Using 2-D Lidar

%shelperAddObstacle Adds obstacles to the occupancy map
function helperAddObstacle(map,obstacleWidth,obstacleHeight,obstacleLocation)

values = ones(obstacleHeight,obstaclewidth);
setOccupancy(map,obstacleLocation,values)

end

See also
binaryOccupancyMap (Navigation Toolbox) | LidarScan | rangeSensor | pcsegdist

1-223

1 Lidar Toolbox Featured Examples

Track Vehicles Using Lidar: From Point Cloud to Track List

This example shows you how to track vehicles using measurements from a lidar sensor mounted on
top of an ego vehicle. Lidar sensors report measurements as a point cloud. The example illustrates
the workflow in MATLAB® for processing the point cloud and tracking the objects. For a Simulink®
version of the example, refer to “Track Vehicles Using Lidar Data in Simulink” (Sensor Fusion and
Tracking Toolbox).The lidar data used in this example is recorded from a highway driving scenario. In
this example, you use the recorded data to track vehicles with a joint probabilistic data association
(JPDA) tracker and an interacting multiple model (IMM) approach.

3-D Bounding Box Detector Model

Due to high resolution capabilities of the lidar sensor, each scan from the sensor contains a large
number of points, commonly known as a point cloud. This raw data must be preprocessed to extract
objects of interest, such as cars, cyclists, and pedestrians. In this example, you use a classical
segmentation algorithm using a distance-based clustering algorithm. For more details about
segmentation of lidar data into objects such as the ground plane and obstacles, refer to the “Ground
Plane and Obstacle Detection Using Lidar” (Automated Driving Toolbox) example. For a deep learning
segmentation workflow, refer to the “Detect, Classify, and Track Vehicles Using Lidar” on page 1-139
example. In this example, the point clouds belonging to obstacles are further classified into clusters
using the pcsegdist function, and each cluster is converted to a bounding box detection with the
following format:

[.r' yz8 1w Fr]

x, W and = refer to the x-, y- and z-positions of the bounding box, # refers to its yaw angle and /, w and
f: refer to its length, width, and height, respectively. The pcfitcuboid function uses L-shape fitting
algorithm to determine the yaw angle of the bounding box.

The detector is implemented by a supporting class HelperBoundingBoxDetector, which wraps
around point cloud segmentation and clustering functionalities. An object of this class accepts a
pointCloud input and returns a list of objectDetection objects with bounding box
measurements.

The diagram shows the processes involved in the bounding box detector model and the Lidar
Toolbox™ functions used to implement each process. It also shows the properties of the supporting
class that control each process.

HelperBoundingBoxDetector

> » > > »

Ra“f poin:[cloud Inlier point Obstacle Clusters objectDetection
(pointCloud) cloud cloud

XLimits
F‘roperty > ¥Limits
names 2Limite

SegmentationMinDistance

The lidar data is available at the following location: https://ssd.mathworks.com/supportfiles/lidar/
data/TrackVehiclesUsingLidarExampleData.zip

1-224

https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip
https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip

Track Vehicles Using Lidar: From Point Cloud to Track List

Download the data files into your temporary directory, whose location is specified by MATLAB's
tempdir function. If you want to place the files in a different folder, change the directory name in the
subsequent instructions.

Load data if unavailable. The lidar data is stored as a cell array of
pointCloud objects.
if ~exist('lidarData', 'var')
dataURL = 'https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleD
datasetFolder = fullfile(tempdir, 'LidarExampleDataset');
if ~exist(datasetFolder, 'dir"')
unzip(dataURL,datasetFolder);
end
% Specify initial and final time for simulation.
initTime = 0;
finalTime = 35;
[lidarData, imageData] = loadlLidarAndImageData(datasetFolder,initTime,finalTime);

)
“©
)

“©

end

% Set random seed to generate reproducible results.
S = rng(2018);

% A bounding box detector model.
detectorModel = HelperBoundingBoxDetector(...

'XLimits',[-50 75],... min-max
'YLimits',[-5 5],... min-max
'ZLimits',[-2 5],... min-max

'SegmentationMinDistance',1.8, ... minimum Euclidian distance
'MinDetectionsPerCluster',1,... minimum points per cluster
'MeasurementNoise',blkdiag(0.25*eye(3),25,eye(3)),... % measurement noise in detection
'GroundMaxDistance',0.3); % maximum distance of ground points from ground plane

o o o° o° of

Target State and Sensor Measurement Model

The first step in tracking an object is defining its state, and the models that define the transition of
state and the corresponding measurement. These two sets of equations are collectively known as the
state-space model of the target. To model the state of vehicles for tracking using lidar, this example
uses a cuboid model with following convention:

& = [Epin 0 1 w h]

Tiin refers to the portion of the state that controls the kinematics of the motion center, and # is the
yaw angle. The length, width, and height of the cuboid are modeled as constants, whose estimates
evolve in time during correction stages of the filter.

In this example, you use two state-space models: a constant velocity (cv) cuboid model and a constant
turn-rate (ct) cuboid model. These models differ in the way they define the kinematic part of the
state, as described below:

To=[rdyyziOlwh
Ty=[rdyybz261wh

For information about their state transition, refer to the helperConstvelCuboid and
helperConstturnCuboid functions used in this example.

The helperCvmeasCuboid and helperCtmeasCuboid measurement models describe how the
sensor perceives the constant velocity and constant turn-rate states respectively, and they return

1-225

1 Lidar oolbox Featured Examples

bounding box measurements. Because the state contains information about size of the target, the
measurement model includes the effect of center-point offset and bounding box shrinkage, as
perceived by the sensor, due to effects like self-occlusion [1]. This effect is modeled by a shrinkage
factor that is directly proportional to the distance from the tracked vehicle to the sensor.

The image below demonstrates the measurement model operating at different state-space samples.
Notice the modeled effects of bounding box shrinkage and center-point offset as the objects move
around the ego vehicle.

Top View

3-D View

Set Up Tracker and Visualization

The image below shows the complete workflow to obtain a list of tracks from a pointCloud input.

1-226

Track Vehicles Using Lidar: From Point Cloud to Track List

Cw = CT

Segmentation Details

Confirmed Tracks

* =
objectDetection

pointClound All Tracks

—

Frobability
of detection

Now, set up the tracker and the visualization used in the example.

A joint probabilistic data association tracker (trackerJPDA) coupled with an IMM filter
(trackingIMM) is used to track objects in this example. The IMM filter uses a constant velocity and
constant turn-rate model and is initialized using the supporting function, helperInitIMMFilter,
included with this example. The IMM approach helps a track to switch between motion models and
thus achieve good estimation accuracy during events like maneuvering or lane changing. The
animation below shows the effect of mixing the constant velocity and constant turn-rate model during
prediction stages of the IMM filter.

Constant turn-rate (CT)

Cwv =CT CT = GV

cv=10.90 ct=0.10 cv=10.50 ct=0.50 » cv=0.10ct=0.90

¥ (m)

The IMM filter updates the probability of each model when it is corrected with detections from the
object. The animation below shows the estimated trajectory of a vehicle during a lane change event
and the corresponding estimated probabilities of each model.

1-227

1 Lidar Toolbox Featured Examples

1-228

MM during lange change

True Trajectory Estimated Trajectory

Y (m)

Set the HasDetectableTrackIDsInput property of the tracker as true, which enables you to
specify a state-dependent probability of detection. The detection probability of a track is calculated
by the helperCalcDetectability function, listed at the end of this example.

assignmentGate = [75 1000]; % Assignment threshold;

confThreshold = [7 10]; % Confirmation threshold for history logic
delThreshold = [8 10]; % Deletion threshold for history logic

Kc = le-9; % False-alarm rate per unit volume

% IMM filter initialization function
filterInitFcn = @helperInitIMMFilter;

% A joint probabilistic data association tracker with IMM filter

tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
'TrackLogic', 'History', ...
"AssignmentThreshold',assignmentGate, ...

Track Vehicles Using Lidar: From Point Cloud to Track List

'ClutterDensity’',Kc, ...
'ConfirmationThreshold',confThreshold, ...
'DeletionThreshold',delThreshold,...
'HasDetectableTrackIDsInput', true, ...
'InitializationThreshold',®, ...
'HitMissThreshold',0.1);

The visualization is divided into these main categories:

1 Lidar Preprocessing and Tracking - This display shows the raw point cloud, segmented ground,
and obstacles. It also shows the resulting detections from the detector model and the tracks of
vehicles generated by the tracker.

2 Ego Vehicle Display - This display shows the 2-D bird's-eye view of the scenario. It shows the
obstacle point cloud, bounding box detections, and the tracks generated by the tracker. For
reference, it also displays the image recorded from a camera mounted on the ego vehicle and its
field of view.

3 Tracking Details - This display shows the scenario zoomed around the ego vehicle. It also shows
finer tracking details, such as error covariance in estimated position of each track and its motion
model probabilities, denoted by cv and ct.

% Create display
displayObject = HelperLidarExampleDisplay(imageData{l},...
'PositionIndex',[1 3 6],...
'VelocityIndex',[2 4 71,...
'DimensionIndex',[9 10 111,...
'YawIndex',8, ...
'MovieName','', ...
'RecordGIF', false);

% Specify a movie name to record a movie.
% Specify true to record new GIFs
Loop Through Data

Loop through the recorded lidar data, generate detections from the current point cloud using the
detector model and then process the detections using the tracker.

0; % Start time
1; % Time step

% Initiate all tracks.
allTracks = struct([]);

% Initiate variables for comparing MATLAB and MEX simulation.
numTracks = zeros(numel(lidarData),2);

% Loop through the data
for i = 1l:numel(lidarData)
% Update time
time = time + dT;

% Get current lidar scan
currentLidar = lidarData{i};

% Generator detections from lidar scan.
[detections,obstacleIndices,groundIndices,croppedIndices] = detectorModel(currentLidar,time)

% Calculate detectability of each track.
detectableTracksInput = helperCalcDetectability(allTracks,[1 3 6]);

1-229

1 Lidar oolbox Featured Examples

1-230

% Pass detections to track.
[confirmedTracks,tentativeTracks,allTracks,info] = tracker(detections,time,detectableTracksIi
numTracks(i,1l) = numel(confirmedTracks);

% Get model probabilities from IMM filter of each track using

% getTrackFilterProperties function of the tracker.

modelProbs = zeros(2,numel(confirmedTracks));

for k = 1l:numel(confirmedTracks)
cl = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID, 'ModelProbabilities"');
modelProbs(:,k) = cl1{1};

end

% Update display

if isvalid(displayObject.PointCloudProcessingDisplay.ObstaclePlotter)
% Get current image scan for reference image
currentImage = imageData{i};

% Update display object
displayObject(detections,confirmedTracks, currentLidar,obstaclelndices,...
groundIndices, croppedIndices,currentImage,modelProbs);
end

% Snap a figure at time = 18
if abs(time - 18) < dT/2
snapnow(displayObject);
end
end

% Write movie if requested

if ~isempty(displayObject.MovieName)
writeMovie(displayObject);

end

% Write new GIFs if requested.

if displayObject.RecordGIF
% second input is start frame, third input is end frame and last input
% 1s a character vector specifying the panel to record.
writeAnimatedGIF(displayObject, 10,170, 'trackMaintenance', 'ego');
writeAnimatedGIF(displayObject,310,330, 'jpda', 'processing');
writeAnimatedGIF(displayObject, 120,140, 'imm', 'details');

end

Track Vehicles Using Lidar: From Point Cloud to Track List

ng and Tracking

Reference Image

int cloud nted ground

detections [1B

The figure above shows the three displays at time = 18 seconds. The tracks are represented by green
bounding boxes. The bounding box detections are represented by orange bounding boxes. The
detections also have orange points inside them, representing the point cloud segmented as obstacles.
The segmented ground is shown in purple. The cropped or discarded point cloud is shown in blue.

Generate C Code

You can generate C code from the MATLAB® code for the tracking and the preprocessing algorithm
using MATLAB Coder™. C code generation enables you to accelerate MATLAB code for simulation. To
generate C code, the algorithm must be restructured as a MATLAB function, which can be compiled
into a MEX file or a shared library. For this purpose, the point cloud processing algorithm and the
tracking algorithm is restructured into a MATLAB function, mexLidarTracker. Some variables are
defined as persistent to preserve their state between multiple calls to the function (see
persistent). The inputs and outputs of the function can be observed in the function description
provided in the "Supporting Files" section at the end of this example.

MATLAB Coder requires specifying the properties of all the input arguments. An easy way to do this
is by defining the input properties by example at the command line using the -args option. For more
information, see “Define Input Properties by Example at the Command Line” (MATLAB Coder). Note
that the top-level input arguments cannot be objects of the handle class. Therefore, the function
accepts the x, y and z locations of the point cloud as an input. From the stored point cloud, this
information can be extracted using the Location property of the pointCloud object. This
information is also directly available as the raw data from the lidar sensor.

1-231

1 Lidar Toolbox Featured Examples

% Input lists
inputExample = {lidarData{l}.Location, 0};

% Create configuration for MEX generation
cfg = coder.config('mex"');

Replace cfg with the following to generate static library and perform
software-in-the-loop simulation. This requires an Embedded Coder license.

cfg = coder.config('lib'); % Static library
cfg.VerificationMode = 'SIL'; % Software-in-the-loop

d° o° o° o° o°

% Generate code if file does not exist.
if ~exist('mexLidarTracker mex','file')
h = msgbox({'Generating code. This may take a few minutes...';'This message box will close wl
% -config allows specifying the codegen configuration
% -0 allows specifying the name of the output file
codegen -config cfg -o mexLidarTracker _mex mexLidarTracker -args inputExample
close(h);
else
clear mexLidarTracker mex;
end

Rerun simulation with MEX Code

Rerun the simulation using the generated MEX code, mexLidarTracker mex. Reset time
time = 0;

for i = 1:numel(lidarData)
time = time + dT;

currentLidar = lidarData{i};

[detectionsMex,obstacleIndicesMex,groundIndicesMex, croppedIndicesMex, ...
confirmedTracksMex, modelProbsMex] = mexLidarTracker mex(currentLidar.Location,time);

% Record data for comparison with MATLAB execution.
numTracks(i,2) = numel(confirmedTracksMex);

end

Compare results between MATLAB and MEX Execution

disp(isequal(numTracks(:,1),numTracks(:,2)));
1
Notice that the number of confirmed tracks is the same for MATLAB and MEX code execution. This

assures that the lidar preprocessing and tracking algorithm returns the same results with generated
C code as with the MATLAB code.

Results
Now, analyze different events in the scenario and understand how the combination of lidar

measurement model, joint probabilistic data association, and interacting multiple model filter, helps
achieve a good estimation of the vehicle tracks.

1-232

Track Vehicles Using Lidar: From Point Cloud to Track List

Track Maintenance

The animation above shows the simulation between time = 3 seconds and time = 16 seconds. Notice
that tracks such as T10 and T6 maintain their IDs and trajectory during the time span. However,
track T9 is lost because the tracked vehicle was missed (not detected) for a long time by the sensor.
Also, notice that the tracked objects are able to maintain their shape and kinematic center by
positioning the detections onto the visible portions of the vehicles. For example, as Track T7 moves
forward, bounding box detections start to fall on its visible rear portion and the track maintains the
actual size of the vehicle. This illustrates the offset and shrinkage effect modeled in the measurement
functions.

Capturing Maneuvers

The animation shows that using an IMM filter helps the tracker to maintain tracks on maneuvering
vehicles. Notice that the vehicle tracked by T4 changes lanes behind the ego vehicle. The tracker is
able maintain a track on the vehicle during this maneuvering event. Also notice in the display that its
probability of following the constant turn model, denoted by ct, increases during the lane change
maneuver.

Joint Probabilistic Data Association

1-233

1 Lidar Toolbox Featured Examples

1-234

Faw poin HLIE Sedmented ground

Cbstacles Vision field of view

| Bou nding box detections | |Bou nding box tracks

This animation shows that using a joint probabilistic data association tracker helps in maintaining
tracks during ambiguous situations. Here, vehicles tracked by T43 and T73, have a low probability of
detection due to their large distance from the sensor. Notice that the tracker is able to maintain
tracks during events when one of the vehicles is not detected. During the event, the tracks first
coalesce, which is a known phenomenon in JPDA, and then separate as soon as the vehicle was
detected again.

Summary

This example showed how to use a JPDA tracker with an IMM filter to track objects using a lidar
sensor. You learned how a raw point cloud can be preprocessed to generate detections for
conventional trackers, which assume one detection per object per sensor scan. You also learned how
to define a cuboid model to describe the kinematics, dimensions, and measurements of extended
objects being tracked by the JPDA tracker. In addition, you generated C code from the algorithm and
verified its execution results with the MATLAB simulation.

Supporting Files

This section highlights the code from some important supporting files used in this example. The
complete list of supporting files can be found in the current working directory after opening the
example in MATLAB.

helperLidarModel

This function defines the lidar model to simulate shrinkage of the
bounding box measurement and center-point offset. This function is used
in the |helperCvmeasCuboid| and |helperCtmeasCuboid| functions to obtain
bounding box measurement from the state.

o® 0% o° o° o° o°

Track Vehicles Using Lidar: From Point Cloud to Track List

<include>helperLidarModel.m</include>

o° o o°

helperinverseLidarModel

This function defines the inverse lidar model to initiate a tracking filter using a lidar bounding box
measurement. This function is used in the helperInitIMMFilter function to obtain state estimates
from a bounding box measurement.

function [pos,posCov,dim,dimCov,yaw,yawCov] = helperInverselLidarModel (meas,measCov)
This function returns the position, dimension, yaw using a bounding
box measurement.

o° o°

o°

Copyright 2019 The MathWorks, Inc.

Shrink rate.
= 3/50;
z = 2/50;

o°

n un

% X,y and z of measurement
meas(1,:);
meas(2,:);

meas(3,:);

I nnx

N < X

[az,~,r] = cart2sph(x,y,z);

% Shift x and y position.
Lshrink = abs(s*r.*(cos(az)));
(

Wshrink = abs(s*r.*(sin(az)));
Hshrink = sz*r;

shiftX = Lshrink;

shiftY = Wshrink;

shiftZ = Hshrink;

X = X + sign(x).*shiftX/2;

y =y + sign(y).*shiftY/2;

z =z - shiftz/2;

pos = [x;y;zl;

posCov = measCov(1:3,1:3,:);

yaw = meas(4,:);
yawCov = measCov(4,4,:);

% Dimensions are initialized for a standard passenger car with low
% uncertainity.

dim = [4.7;1.8;1.4];
dimCov = 0.01*eye(3);

HelperBoundingBoxDetector

This is the supporting class HelperBoundingBoxDetector to accept a point cloud input and return
a list of objectDetection

1-235

1 Lidar Toolbox Featured Examples

classdef HelperBoundingBoxDetector < matlab.System
HelperBoundingBoxDetector A helper class to segment the point cloud
into bounding box detections.

The step call to the object does the following things:

1. Removes point cloud outside the limits.

2. From the survived point cloud, segments out ground

3. From the obstacle point cloud, forms clusters and puts bounding
box on each cluster.

0® 0% o° o° o° o° o° o°

o°

Cropping properties

properties
% XLimits XLimits for the scene
XLimits = [-70 70];
% YLimits YLimits for the scene
YLimits = [-6 6];
% ZLimits ZLimits fot the scene
ZLimits = [-2 10];

end

% Ground Segmentation Properties

properties
% GroundMaxDistance Maximum distance of point to the ground plane
GroundMaxDistance = 0.3;
% GroundReferenceVector Reference vector of ground plane
GroundReferenceVector = [0 0 1];
% GroundMaxAngularDistance Maximum angular distance of point to reference vector
GroundMaxAngularDistance = 5;

end

% Bounding box Segmentation properties

properties
% SegmentationMinDistance Distance threshold for segmentation
SegmentationMinDistance = 1.6;
% MinDetectionsPerCluster Minimum number of detections per cluster
MinDetectionsPerCluster = 2;
% MaxZDistanceCluster Maximum Z-coordinate of cluster
MaxZDistanceCluster = 3;
% MinZDistanceCluster Minimum Z-coordinate of cluster
MinZDistanceCluster = -3;

end

% Ego vehicle radius to remove ego vehicle point cloud.
properties
% EgoVehicleRadius Radius of ego vehicle
EgoVehicleRadius = 3;

end

properties
% MeasurementNoise Measurement noise for the bounding box detection
MeasurementNoise = blkdiag(eye(3),10,eye(3));

end

properties (Nontunable)
MeasurementParameters = struct.empty(0,1);
end

1-236

Track Vehicles Using Lidar: From Point Cloud to Track List

methods
function obj = HelperBoundingBoxDetector(varargin)
setProperties(obj,nargin,varargin{:})
end
end

methods (Access = protected)
function [bboxDets,obstacleIndices,groundIndices,croppedIndices] = stepImpl(obj,currentP
% Crop point cloud
[pcSurvived, survivedIndices, croppedIndices]
% Remove ground plane
[pcObstacles,obstacleIndices,groundIndices]
% Form clusters and get bounding boxes
detBBoxes = getBoundingBoxes (pcObstacles,obj.SegmentationMinDistance,obj.MinDetectio
% Assemble detections
if isempty(obj.MeasurementParameters)
measParams = {};
else
measParams = obj.MeasurementParameters;
end
bboxDets = assembleDetections(detBBoxes,obj.MeasurementNoise,measParams,time);

cropPointCloud(currentPointCloud, obj . XI

removeGroundPlane(pcSurvived, obj.Grount

end
end
end

function detections = assembleDetections(bboxes,measNoise,measParams, time)

% This method assembles the detections in objectDetection format.

numBoxes = size(bboxes,?2);

detections = cell(numBoxes,1);

for i = 1l:numBoxes

detections{i} = objectDetection(time,cast(bboxes(:,i), 'double'), ...

'MeasurementNoise',double(measNoise), 'ObjectAttributes',struct,...
'MeasurementParameters', measParams);

end

end

function bboxes = getBoundingBoxes(ptCloud,minDistance,minDetsPerCluster,maxZDistance,minZDistan
This method fits bounding boxes on each cluster with some basic
rules.
Cluster must have at least minDetsPerCluster points.
Its mean z must be between maxZDistance and minZDistance.
length, width and height are calculated using min and max from each
dimension.
[labels,numClusters] = pcsegdist(ptCloud,minDistance);
pointData = ptCloud.Location;
bboxes = nan(7,numClusters, 'like',pointData);
isValidCluster = false(1l,numClusters);
for i = 1l:numClusters

thisPointData = pointData(labels == 1i,:);

meanPoint = mean(thisPointData,1);

if size(thisPointData,1) > minDetsPerCluster && ...

meanPoint(3) < maxZDistance && meanPoint(3) > minZDistance
cuboid = pcfitcuboid(pointCloud(thisPointData));

0® o° o° o° o° o°

yaw = cuboid.Orientation(3);
L = cuboid.Dimensions(1);
W = cuboid.Dimensions(2);
H = cuboid.Dimensions(3);

if abs(yaw) > 45

1-237

1 Lidar Toolbox Featured Examples

1-238

possibles = yaw + [-90;90];
[~,toChoose] = min(abs(possibles));
yaw = possibles(toChoose);

temp = L;
L =W,
W = temp;

end
bboxes(:,i) = [cuboid.Center yaw L W H]';
isValidCluster(i) = L <20 & W < 20;
end
end
bboxes = bboxes(:,isValidCluster);
end

function [ptCloudOut,obstacleIndices,groundIndices] = removeGroundPlane(ptCloudIn,maxGroundDist,
% This method removes the ground plane from point cloud using
% pcfitplane.
[~,groundIndices,outliers] = pcfitplane(ptCloudIn,maxGroundDist, referenceVector,maxAngularDi.
ptCloudOut = select(ptCloudIn,outliers);
obstacleIndices = currentIndices(outliers);
groundIndices = currentIndices(groundIndices);

end

function [ptCloudOut,indices,croppedIndices] = cropPointCloud(ptCloudIn,xLim,yLim,zLim, egoVehicle
% This method selects the point cloud within limits and removes the
% ego vehicle point cloud using findNeighborsInRadius
locations = ptCloudIn.Location;
locations = reshape(locations,[],3);

insideX = locations(:,1) < xLim(2) & locations(:,1) > xLim(1);
insideY = locations(:,2) < yLim(2) & locations(:,2) > yLim(1);
insideZ = locations(:,3) < zLim(2) & locations(:,3) > zLim(1);

inside = insideX & insideY & insideZ;

% Remove ego vehicle
nearIndices = findNeighborsInRadius(ptCloudIn,[@ O 0],egoVehicleRadius);
nonEgoIndices = true(ptCloudIn.Count,1);
nonEgoIndices(nearIndices) = false;
validIndices = inside & nonEgoIndices;
indices = find(validIndices);
croppedIndices = find(~validIndices);
ptCloudOut = select(ptCloudIn,indices);
end

mexLidarTracker

This function implements the point cloud preprocessing display and the tracking algorithm using a
functional interface for code generation.

function [detections,obstacleIndices,groundIndices,croppedIndices,...
confirmedTracks, modelProbs] = mexLidarTracker(ptCloudLocations,time)

persistent detectorModel tracker detectableTracksInput currentNumTracks

Track Vehicles Using Lidar: From Point Cloud to Track List

if isempty(detectorModel) || isempty(tracker) || isempty(detectableTracksInput) || isempty(curre

% Use the same starting seed as MATLAB to reproduce results in SIL
% simulation.
rng(2018);

% A bounding box detector model.
detectorModel = HelperBoundingBoxDetector(...

'XLimits',[-50 75],... min-max
'YLimits',[-5 5],... min-max
'ZLimits',[-2 5],... min-max

'SegmentationMinDistance',1.8, ... minimum Euclidian distance
'MinDetectionsPerCluster',1,... minimum points per cluster
'MeasurementNoise',blkdiag(0.25*eye(3),25,eye(3)), ... % measurement no
'GroundMaxDistance',0.3); % maximum distance of ground points from

o® o o o° o°

assignmentGate = [75 1000]; % Assignment threshold;

confThreshold = [7 10]; % Confirmation threshold for history logic
delThreshold = [8 10]; % Deletion threshold for history logic

Kc = le-9; % False-alarm rate per unit volume

filterInitFcn = @helperInitIMMFilter;

tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn, ...
'TrackLogic', 'History', ...
"AssignmentThreshold',assignmentGate, ...
'ClutterDensity’',Kc, ...
'ConfirmationThreshold',confThreshold, ...
'DeletionThreshold',delThreshold,...
'HasDetectableTrackIDsInput', true,...
'InitializationThreshold',o, ...
'MaxNumTracks',30, ...
'HitMissThreshold',0.1);

detectableTracksInput = zeros(tracker.MaxNumTracks,2);

currentNumTracks = 0;
end

ptCloud = pointCloud(ptCloudLocations);

% Detector model
[detections,obstacleIndices,groundIndices, croppedIndices] = detectorModel(ptCloud,time);

% Call tracker

[confirmedTracks,~,allTracks] = tracker(detections,time,detectableTracksInput(1l:currentNumTracks
% Update the detectability input

currentNumTracks = numel(allTracks);

detectableTracksInput(l:currentNumTracks,:) = helperCalcDetectability(allTracks,[1 3 6]);

% Get model probabilities

modelProbs = zeros(2,numel(confirmedTracks));

if isLocked(tracker)

for k = 1l:numel(confirmedTracks)

cl = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID, 'ModelProbabilities"');
probs = cl1{1};
modelProbs(1,k)
modelProbs (2, k)

probs(1);
probs(2);

1-239

1 Lidar Toolbox Featured Examples

end
end

end

helperCalcDetectability

The function calculates the probability of detection for each track. This function is used to generate
the "DetectableTracksIDs" input for the trackerJPDA.

function detectableTracksInput = helperCalcDetectability(tracks,posIndices)
This is a helper function to calculate the detection probability of
tracks for the lidar tracking example. It may be removed in a future
release.

o° o° o°

o°

Copyright 2019 The MathWorks, Inc.

The bounding box detector has low probability of segmenting point clouds
into bounding boxes are distances greater than 40 meters. This function
models this effect using a state-dependent probability of detection for
each tracker. After a maximum range, the Pd is set to a high value to
enable deletion of track at a faster rate.

if isempty(tracks)

detectableTracksInput = zeros(0,2);

return;

o® o° o° o° o°

end

rMax = 75;

rAmbig = 40;

stateSize = numel(tracks(1l).State);
posSelector = zeros(3,stateSize);

posSelector(1l,posIndices(1l)) = 1;
posSelector(2,posIndices(2)) = 1;
posSelector(3,posIndices(3)) = 1;

pos = getTrackPositions(tracks,posSelector);
if coder.target('MATLAB')

trackIDs = [tracks.TrackID];
else

trackIDs = zeros(1l,numel(tracks),'uint32');

for i = l:numel(tracks)

trackIDs(i) = tracks(i).TrackID;

end
end
[~,~,r] = cart2sph(pos(:,1),pos(:,2),pos(:,3));
probDetection = 0.9*ones(numel(tracks),1l);
probDetection(r > rAmbig) = 0.4;
probDetection(r > rMax) = 0.99;
detectableTracksInput = [double(trackIDs(:)) probDetection(:)];
end

loadLidarAndImageData

Stitches Lidar and Camera data for processing using initial and final time specified.

function [lidarData,imageDatal = loadLidarAndImageData(datasetFolder,initTime, finalTime)
initFrame = max(1l,floor(initTime*10));

1-240

Track Vehicles Using Lidar: From Point Cloud to Track List

lastFrame = min(350,ceil(finalTime*10));
load (fullfile(datasetFolder, 'imageData 35seconds.mat'), 'allImageData’');
imageData = allImageData(initFrame:lastFrame);

numFrames
lidarData

lastFrame - initFrame + 1;
cell(numFrames,1);

% Each file contains 70 frames.
initFileIndex = floor(initFrame/70) + 1;
lastFileIndex = ceil(lastFrame/70);

frameIndices = [1:70:numFrames numFrames + 1];

counter = 1;

for i = initFileIndex:lastFileIndex
startFrame = framelndices(counter);
endFrame = framelndices(counter + 1) - 1;
load(fullfile(datasetFolder,['lidarData ',num2str(i)]), 'currentLidarData');
lidarData(startFrame:endFrame) = currentLidarData(l: (endFrame + 1 - startFrame));
counter = counter + 1;

end

end

References

[1] Arya Senna Abdul Rachman, Arya. "3D-LIDAR Multi Object Tracking for Autonomous Driving:
Multi-target Detection and Tracking under Urban Road Uncertainties." (2017).

1-241

1 Lidar Toolbox Featured Examples

Build Map from 2-D Lidar Scans Using SLAM

This example shows you how to implement the simultaneous localization and mapping (SLAM)
algorithm on a series of 2-D lidar scans using scan processing algorithms and pose graph
optimization (PGO). The goal of this example is to estimate the trajectory of the robot and build a map
of the environment.

The SLAM algorithm in this example incrementally processes the lidar scans and builds a pose graph
to create the map of the environment. To overcome the drift accumulated in estimated robot
trajectory, the example recognizes previously visited places through scan matching and utilizes the
loop closure information to optimize poses and update the map of the environment. To optimize the
pose graph, this example uses 2-D pose graph optimization from Navigation Toolbox™.

In this example, you learn how to:

» Estimate robot trajectory from a series of scans using scan registration algorithms.

* Optimize the drift in estimated robot trajectory by identifying previously visited places (loop
closures).

* Visualize the map of the environment using scans and their absolute poses.

Load Laser Scans

This example uses data collected in an indoor environment using a Jackal™ robot from Clearpath
Robotics™. The robot is equipped with a SICK™ TiM-511 laser scanner with a maximum range of 10
meters. Load the offlineSlamData.mat file containing the laser scans into the workspace.

data = load('offlineSlamData.mat"');
scans = data.scans;

Robot Trajectory Estimation

The example uses the matchScansGrid and matchScans functions to estimate the relative pose
between successive scans. The matchScansGrid function provides the initial estimate for the
relative pose, which is accurate up to the specified resolution. The matchScans function uses the
estimate as an initial guess, and refines the relative pose for better estimation.

% Set maximum lidar range to be slightly smaller than maximum range of the
% scanner, as the laser readings are less accurate near maximum range
maxLidarRange = 8;
% Set the map resolution to 10 cells per meter, which gives a precision of
% 10cm
mapResolution = 10;
% Create a pose graph object and define information matrix
pGraph = poseGraph;
infoMat = [1 06 0 10 1];
% Loop over each scan and estimate relative pose
prevScan = scans{l};
for i = 2:numel(scans)
currScan = scans{i};
% Estimate relative pose between current scan and previous scan
[relPose,stats] = matchScansGrid(currScan,prevScan,
'MaxRange',maxLidarRange, 'Resolution’,mapResolution);
% Refine the relative pose
relPoseRefined = matchScans(currScan,prevScan, 'initialPose', relPose);
% Add relative pose to the pose graph object

1-242

Build Map from 2-D Lidar Scans Using SLAM

pGraph.addRelativePose(relPoseRefined, infoMat);
ax = show(pGraph, 'IDs', 'off");
title(ax, 'Estimated Robot Trajectory')
drawnow
prevScan = currScan;
end

Estimated Robot Trajectory

Notice that the estimated robot trajectory drifts over time. The drift can be due to any of the
following reasons:

* Noisy scans from the sensor without sufficient overlap

» Absence of significant features

* Inaccurate initial transformation, especially when rotation is significant

The drift in estimated trajectory results in an inaccurate map of the environment. Visualize the map
and robot trajectory using the helperShow on page 1-0 helper function, defined in the Supporting
Functions on page 1-0 section of this example.

hFigMap = figure;

axMap = axes('Parent',hFigMap);
helperShow(scans,pGraph,maxLidarRange, axMap) ;

title(axMap, 'Map of the Environment and Robot Trajectory')

1-243

1 Lidar Toolbox Featured Examples

1-244

Map of the Environment and Robot Trajectory

Drift Correction

Correct the drift in trajectory by accurately detecting the loops, which are places the robot has
previously visited. Add the loop closure edges to the pose graph, which helps to correct the drift in
trajectory during pose graph optimization.

Loop Closure Detection

Loop closure detection determines whether the robot has previously visited the current location. The
search is performed by matching the current scan against the previous scans around the current
robot location, within the radius specified by loopClosureSearchRadius. A scan is accepted as a
match if the match score is greater than the specified LloopClosureThreshold. Loop closures are
detected using the helperDetectLoop helper function, which is attached to this example as a
supporting file.

Adjust the loop closure parameters based on the quality of your results. You can increase the
loopClosureThreshold value to reject false positives in loop closure detection, but the fuction
might still return bad matches in environments with similar or repeated features. To address this,
increase the LloopClosureSearchRadius value to search a larger radius around the current pose
estimate for loop closures, though this increases computation time.

loopClosureThreshold = 110;

loopClosureSearchRadius = 2;

[LloopClosureEdgelds, loopClosurePoses] = helperDetectLoop(scans,pGraph,
loopClosureSearchRadius, loopClosureThreshold);

Build Map from 2-D Lidar Scans Using SLAM

Trajectory Optimization

Add the detected loop closure edges to the pose graph to correct the drift in the estimated trajectory.
Use the optimizePoseGraph (Navigation Toolbox) function to optimize the pose graph.

% Add loop closure edges to pose graph
if ~isempty(loopClosureEdgeIds)
for k = 1l:size(loopClosureEdgelds,1)
pGraph.addRelativePose(loopClosurePoses(k, :),infoMat,
loopClosureEdgelds(k,1),loopClosureEdgelds(k,2));
end
end
% Optimize pose graph
updatedPGraph = optimizePoseGraph(pGraph);

Visualization

Visualize the change in robot trajectory before and after pose graph optimization. The red lines
represent loop closure edges.

hFigTraj = figure('Position',[0 O 900 450]);

% Visualize robot trajectory before optimization
axPGraph = subplot(1,2,1, 'Parent', hFigTraj);
axPGraph.Position = [0.04 0.1 0.45 0.8];
show(pGraph, 'IDs', 'off', 'Parent',axPGraph);
title(axPGraph, 'Before PGO"')

% Visualize robot trajectory after optimization
axUpdatedPGraph = subplot(1,2,2, 'Parent',hFigTraj);
axUpdatedPGraph.Position = [0.54 0.1 0.45 0.8];
show(updatedPGraph, 'IDs', 'off"', 'Parent',axUpdatedPGraph);
title(axUpdatedPGraph, 'After PGO")

axis([axPGraph axUpdatedPGraph],[-6 10 -7 3])
sgtitle('Robot Trajectory', 'FontWeight', 'bold"')

1-245

1 Lidar Toolbox Featured Examples

Robot Trajectory

Before PGO After PGO

2t L J
ok L

> 2F - 1

s L J

6 r L J

5 -4 -2 0 2 4 [8 10 5 -4 -2 0 2 4 [8 10

X X

Visualize the map of the environment and robot trajectory before and after pose graph optimization.
hFigMapTraj = figure('Position',[0 O 900 450]);

% Visualize map and robot trajectory before optimization
ax0ldMap = subplot(1,2,1, 'Parent',hFigMapTraj);
ax0ldMap.Position = [0.05 0.1 0.44 0.8];
helperShow(scans,pGraph,maxLidarRange,ax0ldMap)
title(ax0ldMap, 'Before PGO")

% Visualize map and robot trajectory after optimization

axUpdatedMap = subplot(1,2,2, 'Parent',hFigMapTraj);

axUpdatedMap.Position = [0.56 0.1 0.44 0.8];
helperShow(scans,updatedPGraph,maxLidarRange,axUpdatedMap)
title(axUpdatedMap, 'After PGO")

axis([ax0ldMap axUpdatedMap],[-9 18 -10 9])

sgtitle('Map of the Environment and Robot Trajectory', 'FontWeight', 'bold")

1-246

Build Map from 2-D Lidar Scans Using SLAM

Map of the Environment and Robot Trajectory

Before PGO After PGO

Supporting Functions

The helperShow helper function visualizes the map of the environment and trajectory of the robot.
The function transforms lidar scans using their corresponding poses to create a map of the
environment.

function helperShow(scans,pGraph,maxRange,ax)
hold(ax, 'on")
for i = l:numel(scans)
sc = transformScan(scans{i}.removelnvalidData('RangeLimits',[0.02 maxRangel),
pGraph.nodes(i));
scPoints = sc.Cartesian;

plot(ax,scPoints(:,1),scPoints(:,2),'."', 'MarkerSize',3, 'color','m")
end
nds = pGraph.nodes;
plot(ax,nds(:,1),nds(:,2),"'.-"', 'MarkerSize',5, 'color','b")

hold(ax, 'off"')
axis(ax, 'equal')
box(ax, 'on")
grid(ax, 'on")
xlabel('X")
ylabel('Y")

end

See Also
Functions

matchScansGrid | matchScans | addRelativePose (Navigation Toolbox) | show (Navigation
Toolbox) | optimizePoseGraph (Navigation Toolbox)

1-247

1 Lidar Toolbox Featured Examples

Objects

lidarScan | poseGraph (Navigation Toolbox)

1-248

Terrain Classification for Aerial Lidar Data

Terrain Classification for Aerial Lidar Data

This example shows you how to segment and classify terrain in aerial lidar data as ground, building,
and vegetation. The example uses a LAZ file captured by an airborne lidar system as input. First,
classify the point cloud data in the LAZ file into ground and non-ground points. Then, further classify
non-ground points into building and vegetation points based on normals and curvature features. This
figure provides an overview of the process.

Ground
points

Ground Non-ground Feature B\:,Iél(d:t]gﬁ?:]d B““_di“'él
Classification points Extraction Ye , points
Classification

segmentGround SMRF helperExtractFeatures helperClassify

Point Cloud

Vegetation
points

Load and Visualize Data

Load the point cloud data and corresponding ground truth labels from the LAZ file,
aeriallLidarData. laz, obtained from the Open Topography Dataset [1] on page 1-0 . The point
cloud consists of various classes, including ground, building, and vegetation. Load the point cloud
data and the corresponding ground truth labels into the workspace using the readPointCloud
object function of the lasFileReader object. Visualize the point cloud, color-coded according to the
ground truth labels, using the pcshow function.

lazfile = fullfile(toolboxdir('lidar'), 'lidardata','las', 'aeriallLidarData.laz');
% Read LAZ data from file
lazReader = lasFileReader(lazfile);
% Read point cloud and corresponding ground truth labels
[ptCloud, pointAttributes] = readPointCloud(lazReader,
"Attributes', 'Classification');
grdTruthLabels = pointAttributes.Classification;
% Visualize the input point cloud with corresponding ground truth labels
figure
pcshow(ptCloud.Location,grdTruthLabels)
title('Aerial Lidar Data with Ground Truth')

1-249

1 Lidar Toolbox Featured Examples

1-250

Aerial Lidar Data with Ground Truth

Ground Classification

Ground classification is a preprocessing step to segment the input point cloud as ground and non-
ground. Segment the data loaded from the LAZ file into ground and non-ground points using the
segmentGroundSMRF function.

[groundPtsIdx,nonGroundPtCloud,groundPtCloud] = segmentGroundSMRF(ptCloud);
% Visualize ground and non-ground points in green and magenta, respectively
figure

pcshowpair(nonGroundPtCloud, groundPtCloud)

title('Classified Ground and Non-Ground Points')

Terrain Classification for Aerial Lidar Data

Classified Ground and Non-Ground Points

Feature Extraction

Extract features from the point cloud using the helperExtractFeatures function. All the helper

functions are attached to this example as supporting files. The helper function estimates the normal
and curvature values for each point in the point cloud. These features provide underlying structure

information at each point by correlating it with the points in its neighborhood.

You can specify the number of neighbors to consider. If the number of neighbors is too low, the helper
function overclusters vegetation points. If the number of neighbors is too high, there is no defining
boundary between buildings and vegetation, as vegetation points near the building points are
misclassified.

neighbors = 10;
[normals, curvatures,neighInds] = helperExtractFeatures(nonGroundPtCloud,
neighbors);

Building and Vegetation Classification

The helper function uses the variation in normals and curvature to distinguish between buildings and
vegetation. The buildings are more planar compared to vegetation, so the change in curvature and
the relative difference of normals between neighbors is less for points belonging to buildings.
Vegetation points are more scattered, which results in a higher change in curvatures as compared to
buildings. The helperClassify function classifies the non-ground points into building and
vegetation. The helper function classifies the points as building based on the following criteria:

* The curvature of each point must be small, within the specified curvature threshold,
curveThresh.

1-251

1 Lidar Toolbox Featured Examples

1-252

* The neighboring points must have similar normals. The cosine similarity between neighboring
normals must be greater than the specified normal threshold, normalThresh.

The points that do not satisfy the above criteria are marked as vegetation. The helper function labels
the points belonging to vegetation as 1 and building as 2.

% Specify the normal threshold and curvature threshold

normalThresh = 0.85;

curveThresh = 0.02;

% Classify the points into building and vegetation

labels = helperClassify(normals,curvatures,neighInds,
normalThresh, curveThresh);

Extract the building and vegetation class labels from the ground truth label data. As the LAZ file has
many classes, you must first isolate the ground, building and vegetation classes. The classification
labels are in compliance with the ASPRS standard for LAZ file formats.

» Classification Value 2 — Represents ground points

» Classification Values 3, 4, and 5 — Represent low, medium, and high vegetation points

» Classification Value 6 — Represents building points

Define maskData to extract points belonging to the ground, buildings, and vegetation from the input
point cloud.

maskData = grdTruthLabels>=2 & grdTruthLabels<=6;
Modify the ground truth labels of the input point cloud, specified as grdTruthLabels.
% Compress low, medium, and high vegetation to a single value

grdTruthLabels(grdTruthLabels>=3 & grdTruthLabels<=5) = 4;
% Update grdTruthLabels for metrics calculation

grdTruthLabels(grdTruthLabels == 2) = 1;
grdTruthLabels(grdTruthLabels == 4) = 2;
grdTruthLabels(grdTruthLabels == 6) = 3;

Store the predicted labels acquired from previous classification steps in estimatedLabels.

estimatedLabels = zeros(ptCloud.Count,1);
estimatedLabels(groundPtsIdx) = 1;

estimatedLabels(labels == 1) ;
estimatedLabels(labels == 2)

2;
3;
Extract the labels belonging to ground, buildings, and vegetation.

grdTruthLabels = grdTruthLabels(maskData);
estimatedLabels = estimatedLabels(maskData);

Visualize the terrain with the ground truth and estimated labels.

ptCloud = select(ptCloud,maskData);

hFig = figure('Position',[0 O 900 4001]);

axMapl = subplot(1,2,1, 'Color', 'black', 'Parent',hFig);
axMapl.Position = [0 0.2 0.5 0.55];
pcshow(ptCloud.Location,grdTruthLabels, 'Parent',axMapl)
axis off

title(axMapl, 'Aerial Lidar Data with Ground Truth Labels"')
axMap2 = subplot(1,2,2,'Color', 'black', 'Parent',hFig);

Terrain Classification for Aerial Lidar Data

axMap2.Position = [0.5,0.2,0.5,0.55];
pcshow(ptCloud.Location,estimatedlLabels, 'Parent',axMap2)
axis off

title(axMap2, 'Aerial Lidar Data with Classified Labels')

Aerial Lidar Data with Ground Truth Labels Aerial Lidar Data with Classified Labels

Validation

Validate the classification by computing the total accuracy on the given point cloud along with the
class accuracy, intersection-over-union (IoU), and weighted IoU.

confusionMatrix = segmentationConfusionMatrix(estimatedLabels,double(grdTruthLabels));
ssm = evaluateSemanticSegmentation({confusionMatrix},

{'Ground' 'Vegetation' 'Building'}, 'Verbose',0);
disp(ssm.DataSetMetrics)

GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU

0.99769 0.99608 0.98233 0.99547

disp(ssm.ClassMetrics)

Accuracy ToU
Ground 0.99995 0.99995
Vegetation 0.99079 0.99008
Building 0.99751 0.95696
See Also
Functions

readPointCloud | segmentGroundSMRF| pcnormals | pcshow | pcshowpair |
segmentationConfusionMatrix | evaluateSemanticSegmentation

1-253

1 Lidar Toolbox Featured Examples

Objects
lasFileReader
References

[1] Starr, Scott. "Tuscaloosa, AL: Seasonal Inundation Dynamics and Invertebrate Communities."
National Center for Airborne Laser Mapping, December 1, 2011. OpenTopography (https://doi.org/
10.5069/G9SF2T3K)

1-254

https://doi.org/10.5069/G9SF2T3K
https://doi.org/10.5069/G9SF2T3K

Data Augmentations for Lidar Object Detection Using Deep Learning

Data Augmentations for Lidar Object Detection Using Deep
Learning

This example shows how to perform typical data augmentation techniques for 3-D object detection
workflows with lidar data.

Lidar object detection methods predict 3-D bounding boxes around the objects of interest. Data
augmentation methods help you avoid overfitting issues while training and also improve the detection
accuracy. This example covers global and local augmentation techniques: global augmentation applies
to the entire point cloud of a scene and local augmentation techniques applies only to the points
belonging to individual objects in a scene.

Load Data

Extract the ZIP file attached to this example to the temp directory. The ZIP file contains
sampleWPIPointClouds folder that holds the point clouds and sampleWPILabels.mat file that
holds the ground truth labels.

unzip("sampleWPIPointClouds.zip",tempdir);
datalLocation = fullfile(tempdir, "sampleWPIPointClouds");

Create a file datastore to load PCD files using the pcread function.

lds = fileDatastore(datalLocation, "ReadFcn",@(x) pcread(x));

Create a box label datastore to load the 3-D ground truth bounding boxes.

load("sampleWPILabels.mat","trainLabels")
bds = boxLabelDatastore(trainLabels);

Use the combine function to combine the point clouds and 3-D bounding boxes into a single
datastore.

cds = combine(lds,bds);

Read the point cloud and corresponding ground truth label from datastore and display.

inputData = read(cds);

ptCloud = inputData{l,1};
gtLabels = inputData{l,2};
figure;

ax = pcshow(ptCloud.Location);

Draw the 3-D bounding boxes over the point cloud.
showShape("cuboid",gtLabels, "Parent",ax, "Opacity",0.1,

"Color","green","LineWidth",0.5);
zoom(ax,2);

1-255

1 Lidar Toolbox Featured Examples

reset(cds);

Global Data Augmentation

Global data augmentation techniques are used when the point clouds in a dataset have little
variation. A global technique applies transformation to the entire point cloud and generates new
point cloud samples. It applies the same transformation to all corresponding ground truth boxes. The
following four global data augmentation techniques are commonly used [1 on page 1-0].

1 Random rotation

2 Random scaling

3 Random translation
4 Random flipping

Rotate Point Cloud

Randomly rotate the point cloud and the 3-D bounding boxes within the specified range of angles
along the z-axis. By doing so, you can simulate data points, such as a vehicle taking a turn. The
typical range for rotation is [-45 45] degrees.

Set the random seed for reproducibility.

rng(1);

Define minimum and maximum yaw angles for rotation.

1-256

Data Augmentations for Lidar Object Detection Using Deep Learning

minYawAngle
maxYawAngle

-45;
45;

Define the grid size to bin the point cloud to.

gridSize = [32 32 32];

Define the limits of the region of interest within the point cloud.

axisLimits = [-100 100];

Create an output view for the affine transformation.

outView = imref3d(gridSize,axisLimits,axisLimits,axisLimits);
Calculate a random angle from the specified yaw angle range.

theta = minYawAngle + rand*(maxYawAngle-minYawAngle);

Create a transformation that rotates the point clouds and 3-D bounding boxes.
tform = randomAffine3d("Rotation",@() deal([0,0,1],theta));

Apply the transformation to the point cloud.

ptCloudTransformed = pctransform(ptCloud, tform);

Apply the same transformation to the 3-D bounding boxes.
gtLabelsTranformed = bboxwarp(gtLabels,tform,outView);

Display the rotated point cloud and the ground truth boxes.

figure;

axl = pcshow(ptCloudTransformed.Location);
showShape("cuboid",gtLabelsTranformed, "Parent",axl, "Opacity",0.1,

"Color","green","LineWidth",0.5);
zoom(ax1,2);

1-257

1 Lidar Toolbox Featured Examples

Scale Point Cloud

Randomly scale the point cloud and the 3-D bounding boxes within the specified range of scales. The
typical scaling range is [0.95 1.05]. The example uses a range of [0.5 0.7] for better
visualization.

Create a transformation to scale the point cloud and 3-D bounding boxes.
tform = randomAffine3d("Scale",[0.5 0.7]);

Apply the transformation to the point cloud.

ptCloudTransformed = pctransform(ptCloud,tform);

Apply the same transformation to the 3-D bounding boxes.
gtLabelsTranformed = bboxwarp(gtLabels,tform,outView);

Display the scaled point cloud and the ground truth boxes.

figure;

ax2 = pcshow(ptCloudTransformed.Location);
showShape("cuboid",gtLabelsTranformed, "Parent",ax2, "Opacity",0.1,

"Color","green","LineWidth",0.5);
zoom(ax2,2);

1-258

Data Augmentations for Lidar Object Detection Using Deep Learning

Translate Point Cloud

Randomly translate the point cloud and the 3-D bounding boxes along the x-, y-, and z-axis within the
specified range.

Create a transformation to translate the point cloud and 3-D bounding boxes.
tform = randomAffine3d("XTranslation",[0 0.2],
"YTranslation", [0 0.21], ...
"ZTranslation",[0 0.11);
Apply the transformation to the point cloud.

ptCloudTransformed = pctransform(ptCloud,tform);

Apply the same transformation to the 3-D bounding boxes.

gtLabelsTranformed = bboxwarp(gtLabels,tform,outView);

Display the translated point cloud and the ground truth boxes.

figure;

ax3 = pcshow(ptCloudTransformed.Location);

showShape("cuboid",gtLabelsTranformed, "Parent",ax3, "Opacity",0.1,"Color",
"green","LineWidth",0.5);

zoom(ax3,2);

1-259

1 Lidar Toolbox Featured Examples

1-260

Flip Along Axis

Randomly flip the point cloud and the 3-D bounding boxes along the y-axis. Do not flip along the x-
axis, as the bounding box annotations are provided in the camera field of view.

Create a transformation to flip the point cloud and 3-D bounding boxes.
tform = randomAffine3d("YReflection",true);
Apply the transformation to the point cloud.

ptCloudTransformed = pctransform(ptCloud,tform);

Apply the same transformation to the 3-D bounding boxes using the helper function flipBbox,
attached to this example as a supporting file.

gtLabels = flipBbox(gtLabels,tform);

Display the flipped point cloud and the ground truth boxes.

figure;

ax4 = pcshow(ptCloudTransformed.Location);

showShape("cuboid",gtLabels, "Parent",ax4,"Opacity",0.1,
"Color","green","LineWidth",0.5);

zoom(ax4,2);

Data Augmentations for Lidar Object Detection Using Deep Learning

Ground Truth Data Augmentation

Ground truth data augmentation is a technique which introduces randomly selected ground truth
boxes from a data store or another point cloud into the current point cloud while training [1 on page
1-0]. Using this approach, you can increase the number of ground truth boxes per point cloud and
simulate objects in different environments. To avoid physically impossible outcomes, you perform a
collision test on the samples to be added and the ground truth boxes of the current point cloud. Use
this augmentation technique when there is a class imbalance in the data set.

Use the samplelLidarData function to sample 3-D bounding boxes and the corresponding points
from a datastore. You can filter out the sampled points using minPoints and store the filtered
samples at a location specified by the sampleLocation.

classNames = {'car'};

minPoints = 20;

sampleLocation = fullfile(tempdir,"GTSamples");

[ldsSampled,bdsSampled] = sampleLidarData(cds,classNames, "MinPoints",minPoints, ...
"WriteLocation",sampleLocation, "Verbose", false);

cdsSampled = combine(ldsSampled, bdsSampled);

Use the pcBbox0Oversample function to randomly augment a fixed number of objects to the point
cloud from the class "car". Define the total number of objects in the output point cloud using
totalObjects.

totalObjects
cdsAugmented

5;
transform(cds,@(x)pcBboxOversample(x,cdsSampled, classNames, totalObjects));

1-261

1 Lidar Toolbox Featured Examples

1-262

Display the point cloud along with the ground truth augmented boxes.

augData = read(cdsAugmented);

augptCld = augData{l,1};

auglLabels = augbata{l,2};

figure;

ax5 = pcshow(augptCld.Location);

showShape("cuboid",auglLabels, "Parent",ax5,"Opacity",0.1,
"Color","green","LineWidth",0.5);

zoom(ax5,2);

Local Data Augmentation

Local data augmentation applies augmentation only to the points inside the ground truth boxes in a
point cloud [1 on page 1-0 1. The rest of the point cloud remains the same.

Read the point cloud and corresponding ground truth label.

reset(cds);
inputData = read(cds);
ptCloud = inputData{l,1};
gtLabels = inputData{l,2};
gtLabelsTransformed = zeros(size(gtLabels));
for i = 1:size(gtLabels,1)

labelParams = gtlLabels(i,:);

centroidLoc = labelParams(1,1:3);

model = cuboidModel(labelParams);

Data Augmentations for Lidar Object Detection Using Deep Learning

indices = findPointsInsideCuboid(model,ptCloud);
numPointsInside = size(indices,1);

Segregate the ground truth points from the original point cloud using the helper funtion
removeIndicesFromPointCloud, attached to this example as a supporting file.

end

updatedPtCloud = removeIndicesFromPtCloud(ptCloud,indices);
cubPtCloud = select(ptCloud,indices);

% Shift the segregrated point cloud to the origin.
numPoints = cubPtCloud.Count;

shiftRange = -1.*repmat(centroidLoc, [numPoints 1]);
cubPtCloud = pctransform(cubPtCloud, shiftRange);

% Define the minimum and maximum yaw angles for rotation.
minYawAngle = -45;

maxYawAngle = 45;

% Calculate a random angle from the specified yaw angle range.
theta = minYawAngle + rand*(maxYawAngle - minYawAngle);

% Create a transformation that rotates, translates, and scales the
% point clouds and 3-D bounding boxes.
tform = randomAffine3d("Rotation",@() deal([0 O 1],theta),...
"Scale",[0.95 1.05],...
"XTranslation", [0 0.2],
"YTranslation", [0 0.21, ...
"ZTranslation",[0 0.1]);
% Apply transfomation to the 3-D bounding box.
labelParams(1,1:3) = labelParams(1,1:3) - centroidLoc;
labelParamsTransformed = bboxwarp(labelParams,tform,outView);

% Calculate the overlap ratio between the transformed box and the

% original ground truth boxes by converting them to rotated rectangle

% format, defined as [xcenter,ycenter,width,height,yaw].

overlapRatio = bboxOverlapRatio(labelParamsTransformed(:,[1,2,4,5,9]),
gtLabels(:,[1,2,4,5,91));

[maxOverlapRatio, maxOverlapIdx] = max(overlapRatio);

% Check if any transformed boxes overlap with the ground truth
% boxes.
if (maxOverlapRatio > 0) && (maxOverlapldx ~= 1)
shiftRange = -1.*shiftRange;
cubPtCloud = pctransform(cubPtCloud, shiftRange);
updatedPtCloud = pccat([updatedPtCloud, cubPtCloud]);
gtLabelsTransformed(i,1l) = labelParams;
else
cubPtCloudTransformed = pctransform(cubPtCloud, tform);
shiftRange = -1.*shiftRange;
cubPtCloudTransformed = pctransform(cubPtCloudTransformed, shiftRange);
updatedPtCloud = pccat([updatedPtCloud, cubPtCloudTransformed]);
gtLabelsTransformed(i,:) = labelParamsTransformed;
end
gtLabelsTransformed(i,1:3) = gtLabelsTransformed(i,1:3) + centroidLoc;
ptCloud = updatedPtCloud;

1-263

Lidar Toolbox Featured Examples

1-264

Display the point cloud along with the augmented ground truth boxes.

figure;

ax6 = pcshow(updatedPtCloud.Location);

showShape("cuboid",gtLabelsTransformed, "Parent",ax6, "Opacity",0.1,
"Color","green","LineWidth",0.5);

zoom(ax6,2);

reset(cds);

References

[1] Hahner, Martin, Dengxin Dai, Alexander Liniger, and Luc Van Gool. "Quantifying Data
Augmentation for LiDAR Based 3D Object Detection." Preprint, submitted April 3, 2020. https://

arxiv.org/abs/2004.01643.

https://arxiv.org/abs/2004.01643
https://arxiv.org/abs/2004.01643

Unorganized to Organized Conversion of Point Clouds Using Spherical Projection

Unorganized to Organized Conversion of Point Clouds Using
Spherical Projection

This example shows how to convert unorganized point clouds to organized format using spherical
projection.

Introduction

A 3-D lidar point cloud is usually represented as a set of Cartesian coordinates (x, y, z). A point cloud
also contains additional information such as intensity, and RGB values. Unlike the distribution of
image pixels, the distribution of a lidar point cloud is usually sparse and irregular. Processing such
sparse data is inefficient. To obtain a compact representation, you project lidar point clouds onto a
sphere to create a dense, grid-based representation known as an organized representation [1 on page
1-0]. To learn more about the differences between organized and unorganized point clouds, see
“What are Organized and Unorganized Point Clouds?”. Ground plane extraction and key point
detector methods require organized point clouds. Additionally, you must convert your point cloud to
organized format if you want to use most deep learning segmentation networks, including
SqueezeSegV1, SqueezeSegV?2, RangeNet++ [2 on page 1-0], and SalsaNext [3 on page 1-0 1.
For an example showing how to use deep learning with an organized point cloud see “Lidar Point
Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network” on page 1-173
example.

Lidar Sensor Parameters

To convert an unorganized point cloud to organized format using spherical projection, you must
specify the parameters of the lidar sensor used to create the point cloud. Refer to the data sheet of
your sensor to know more about the sensor parameters. You can specify the following parameters.

* Beam configuration — 'uniform' or 'gradient'. Specify 'uniform'if the beams have equal
spacing. Specify 'gradient’ if the beams at the horizon are tightly packed, and those toward the
top and bottom of the sensor field of view are more spaced out.

» Vertical resolution — Number of channels in the vertical direction, that is, the number of lasers.
Typical values are 32, and 64.

» Vertical beam angles — Angular position of each vertical channel. You must specify this parameter
when beam configuration is 'gradient'.

» Upward vertical field of view — Field of view in the vertical direction above the horizon (in
degrees).

* Downward vertical field of view — Field of view in the vertical direction below the horizon (in
degrees).

* Horizontal resolution — Number of channels in horizontal direction. Typical values are 512, and
1024.

* Horizontal angular resolution — The angular resolution between each channel along horizontal
direction. You must specify this parameter when horizontal resolution is not mentioned in the
datasheet.

* Horizontal field of view — Field of view covered in the horizontal direction (in degrees). In most
cases, this value is 360 degrees.

1-265

1 Lidar oolbox Featured Examples

Horizontal Horizontal Horizontal Angular Beam
Field of View Resolution Resolution Configuration

Spherical Projection —————»

Unorganized Point Organized Point Cloud
Cloud represented as channels

Downward Vertical Vertical Vertical Upward Vertical
Field of View Resolution Beam Angles Field of View

You can specify most the above sensor parameters using a LidarParameters object

Ouster 0S-1 Sensor

Read the point cloud using the pcread function.

fileName = fullfile(matlabroot, 'examples', 'deeplearning shared', 'data’, 'ousterLidarDrivingData.p
ptCloud = pcread(fileName);

Check the size of the sample point cloud. If the point cloud coordinates are in the form, M-by-N-by-3,
it is an organized point cloud.

isOrganized = size(ptCloud.Location,3) == 3;

Remove the invalid points and convert the point cloud to unorganized format using
removeInvalidPoints function.

if isOrganized

ptCloudUnOrg = removelInvalidPoints(ptCloud);
end

The point cloud data was collected from an Ouster OS1 Genl sensor. Specify the sensor parameters
using lidarParameters function.

hResolution = 1024;
params = lidarParameters("0S1Genl-64",hResolution);

Convert the unorganized point cloud to organized format using the pcorganize function.
ptCloudOrg = pcorganize(ptCloudUnOrg,params);

Display the intensity channel of the original and reconstructed organized point clouds.
figure

montage({uint8(ptCloud.Intensity),uint8(ptCloudOrg.Intensity)});
title("Intensity Channel of Original Point Cloud(Top) vs. Reconstructed Organized Point Cloud(Bo

1-266

Unorganized to Organized Conversion of Point Clouds Using Spherical Projection

Intensity Channel of Original Point Cloud(Top) vs. Reconstructed Organized Point Cloud(Bottom)

Display both the original organized point cloud and the reconstructed organized point cloud using the
helperShowUnorgAndOrgPair helper function, attached to this example as a supporting file.

displayl = helperShowUnorgAndOrgPair();
zoomFactor = 3.5;
displayl.plotLidarScan(ptCloud,ptCloudOrg, zoomFactor);

Original Poirt Clou Reconstructed Point Cloud

Velodyne Sensor

Read the point cloud using the pcread function.

ptCloudUnOrg = pcread('HDL64LidarData.pcd');

The point cloud data is collected from the Velodyne HDL-64 sensor. Specify the sensor parameters
using lidarParameters function.

hResolution = 1024;
params = lidarParameters("HDL64E",hResolution);

Convert the unorganized point cloud to organized format using the pcorganize function.

ptCloudOrg = pcorganize(ptCloudUnOrg,params);

Display the intensity channel of the reconstructed organized point cloud. Resize the image for better
visualization.

intensityChannel = ptCloudOrg.Intensity;
intensityChannel = imresize(intensityChannel, 'Scale',[3 1]);
figure

imshow(intensityChannel);

1-267

1 Lidar Toolbox Featured Examples

1-268

| f’a -
ey

Display both the original organized point cloud and the reconstructed organized point cloud using the
helperShowUnorgAndOrgPair helper function, attached to this example as a supporting file.

display2 = helperShowUnorgAndOrgPair();
zoomFactor = 2.5;
display2.plotLidarScan(ptCloudUnOrg,ptCloudOrg, zoomFactor);

Criginal Paint Cloud Reconstructed Paoint Cloud

Configure the Sensor Parameters

For any given point cloud, you can specify the sensor parameters like vertical and horizontal
resolution, vertical and horizontal field-of-view when converting to organized format.

Read the point cloud using the pcread function.

ptCloudUnOrg = pcread('HDL64LidarData.pcd');

The point cloud data is collected from the Velodyne HDL-64 sensor. You can configure the sensor by
specifying different parameters.

% Define vertical and horizontal resolution.
vResolution = 32;
hResolution = 512;

% Define vertical and horizontal field-of-view.
vFoVUp = 2;

vFoVDown = -24.9;

vFoV [vFoVUp vFoVDown];

hFoV 270;

Specify the sensor parameters using lidarParameters function.

Unorganized to Organized Conversion of Point Clouds Using Spherical Projection

params = lidarParameters(vResolution,vFoV,hResolution, "HorizontalFoV",6hFoV);
Convert the unorganized point cloud to organized format using the pcorganize function.
ptCloudOrg = pcorganize(ptCloudUnOrg,params);

Display the intensity channel of the reconstructed organized point cloud. Resize the image for better
visualization.

intensityChannel = ptCloudOrg.Intensity;
intensityChannel = imresize(intensityChannel, 'Scale',[3 1]);
figure

imshow(intensityChannel);

Display both the original organized point cloud and the reconstructed organized point cloud using the
helperShowUnorgAndOrgPair helper function, attached to this example as a supporting file.

display3 = helperShowUnorgAndOrgPair();
display3.plotLidarScan(ptCloudUnOrg,ptCloudOrg, zoomFactor);

Criiinal Paird Claud i ucted Paint Cloud

Pandar Sensor

Read the point cloud using the pcread function.

ptCloudUnOrg = pcread('Pandar64LidarData.pcd');

The point cloud data is collected using a Pandar-64 sensor [4 on page 1-0]. You can specify the
following parameters, using the information given in the device datasheet [5 on page 1-0].

1-269

1 Lidar oolbox Featured Examples

1-270

vResolution = 64;
hAngResolution = 0.2;

The beam configuration is 'gradient’, meaning that the beam spacing is not uniform. Specify the
beam angle values along the vertical direction.

vbeamAngles = [15.0000 11.0000 8.0000 5.0000 3.0000 2.0000 1.8333 1.6667
0.5000 0.3333 0.1667 0 -0.1667 -0.3333 -0.5000 -0.6667 -
-1.8333 -2.0000 -2.1667 -2.3333 -2.5000 -2.6667 -2.8333 -3.0000 -
-4.1667 -4.3333 -4.5000 -4.6667 -4.8333 -5.0000 -5.1667 -5.3333 -
-9.0000 -10.0000 -11.0000 -12.0000 -13.0000 -14.0000 -19.0000 -25.0000];

Calculate the horizontal resolution.

hResolution = round(360/hAngResolution);

Define the sensor parameters using lidarParameters function.

params = lidarParameters(vbeamAngles,hResolution);

Convert the unorganized point cloud to organized format using the pcorganize function.

ptCloudOrg = pcorganize(ptCloudUnOrg,params);

Display the intensity channel of the reconstructed organized point cloud. Resize the image and use
histeq for better visualization.

intensityChannel = ptCloudOrg.Intensity;
intensityChannel = imresize(intensityChannel, 'Scale',[3 11);
figure

histeq(intensityChannel./max(intensityChannel(:)));

Display both the original organized point cloud and the reconstructed organized point cloud using the
helperShowUnorgAndOrgPair helper function, attached to this example as a supporting file.

display4 = helperShowUnorgAndOrgPair();
zoomFactor = 4;
display4.plotLidarScan(ptCloudUnOrg,ptCloudOrg,zoomFactor);

Unorganized to Organized Conversion of Point Clouds Using Spherical Projection

Original Paint Cloud i ructed Point Cloud

References

[1] Wu, Bichen, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. "SqueezeSeg: Convolutional Neural Nets
with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud." In 2018
IEEE International Conference on Robotics and Automation (ICRA), 1887-93. Brisbane, QLD: IEEE,
2018. https://doi.org/10.1109/ICRA.2018.8462926.

[2] Milioto, Andres, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss. "RangeNet ++: Fast and
Accurate LiDAR Semantic Segmentation." In 2019 IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS), 4213-20. Macau, China: [EEE, 2019. https://doi.org/10.1109/
[ROS40897.2019.8967762.

[3] Cortinhal, Tiago, George Tzelepis, and Eren Erdal Aksoy. "SalsaNext: Fast, Uncertainty-Aware
Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving." ArXiv:2003.03653 [Cs], July
9, 2020. http://arxiv.org/abs/2003.03653.

[4] "PandaSet Open Datasets - Scale." Accessed December 22, 2020. https://scale.com/open-datasets/
pandaset.

[5] "Pandar64 User Manual." Accessed December 22, 2020. https://
hesaiweb2019.blob.core.chinacloudapi.cn/uploads/Pandar64 User's Manual.pdf.

1-271

https://doi.org/10.1109/ICRA.2018.8462926
https://doi.org/10.1109/IROS40897.2019.8967762
https://doi.org/10.1109/IROS40897.2019.8967762
http://arxiv.org/abs/2003.03653
https://scale.com/open-datasets/pandaset
https://scale.com/open-datasets/pandaset
https://hesaiweb2019.blob.core.chinacloudapi.cn/uploads/Pandar64_User's_Manual.pdf)
https://hesaiweb2019.blob.core.chinacloudapi.cn/uploads/Pandar64_User's_Manual.pdf)

1 Lidar Toolbox Featured Examples

Lane Detection in 3-D Lidar Point Cloud

This example shows how to detect lanes in lidar point clouds. You can use the intensity values
returned from lidar point clouds to detect ego vehicle lanes. You can further improve the lane
detection by using a curve-fitting algorithm and tracking the curve parameters. Lidar lane detection
enables you to build complex workflows like lane keep assist, lane departure warning, and adaptive
cruise control for autonomous driving. A test vehicle collects the lidar data using a lidar sensor
mounted on its rooftop.

Introduction

Lane detection in lidar involves detection of the immediate left and right lanes, also known as ego
vehicle lanes, with respect to the lidar sensor. It involves the following steps:

* Region of interest extraction

* Ground plane segmentation

* Peak intensity detection

* Lane detection using window search

* Parabolic polynomial fitting

* Parallel lane fitting

* Lane tracking

This flowchart gives an overview of the workflow presented in this example.

Lane Points Detection

Preprocessing

Region
of Interest
Extraction

Ground Plane
Segmentation

Peak Intensity
Detection

Lidar Point Cloud Window Search

Lane Fitting

Lane
Boundaries

Parallel Lane .
Polynomial

Lane Tracking g
Fittin
A Fitting

|
|
|
|
| Parabolic
|
|
|
|
|

The advantages of using lidar data for lane detection are :

» Lidar point clouds give a better 3-D representation of the road surface than image data, thus
reducing the required calibration parameters to find the bird's-eye view.

1-272

Lane Detection in 3-D Lidar Point Cloud

* Lidar is more robust against adverse climatic conditions than image-based detection.
+ Lidar data has a centimeter level of accuracy, leading to accurate lane localization.

Download and Prepare Lidar Data Set

The lidar data used in this example has been collected using the Ouster OS1-64 channel lidar sensor,
producing high-resolution point clouds. This data set contains point clouds stored as a cell array of
pointCloud object. Each 3-D point cloud consists of XYZ locations along with intensity information.

Note: Download time of the data depends on your internet connection. MATLAB will be temporarily
unresponsive during the execution of this code block.

% Download lidar data
lidarData = helperGetDataset;

Selecting the first frame of the dataset for further processing.

% Select first frame
ptCloud = lidarData{1l};

% Visualize input point cloud
figure

pcshow(ptCloud)

title('Input Lidar Point Cloud")
axis ([0 50 -15 15 -5 5])
view([-42 35])

Input Lidar Point Cloud

1-273

1 Lidar Toolbox Featured Examples

Preprocessing

To estimate the lane points, first preprocess the lidar point clouds. Preprocessing involves the
following steps:

* Region of interest extraction
* Ground plane segmentation

% Define ROI in meters

x1lim = [5 55];
ylim = [-3 31;
zlim = [-4 1];

roi = [xlim ylim zlim];

% Crop point cloud using ROI
indices = findPointsInROI(ptCloud, roi);
croppedPtCloud = select(ptCloud,indices);

% Remove ground plane

maxDistance = 0.1;

referenceVector = [0 0 1];

[model,inliers,outliers] = pcfitplane(croppedPtCloud,maxDistance, referenceVector);
groundPts = select(croppedPtCloud,inliers);

figure
pcshow(groundPts)
title('Ground Plane')
view(3)

1-274

Lane Detection in 3-D Lidar Point Cloud

Ground Plane

Lane Point Detection

Detect lane points by using a sliding window search, where the initial estimates for the sliding
windows are made using an intensity-based histogram.

Lane point detection consists primarily of these two steps:

* Peak intensity detection

* Window search

Peak Intensity Detection

Lane points in the lidar point cloud have a distinct distribution of intensities. Usually, these intensities
occupy the upper region in the histogram distribution and appear as high peaks. Compute a
histogram of intensities from the detected ground plane along the ego vehicle axis (positive X-axis).
The helperComputeHistogram helper function creates a histogram of intensity points. Control the
number of bins for the histogram by specifying the bin resolution.

histBinResolution

= 0.2;
[histVal,yvals] = hel

perComputeHistogram(groundPts,histBinResolution);

figure
plot(yvals,histVval, '--k')
set(gca, 'XDir', 'reverse')
hold on

1-275

1 Lidar Toolbox Featured Examples

Obtain peaks in the histogram by using the helperfindpeaks helper function. Further filter the
possible lane points based on lane width using the helperInitialWindow helper function.

[peaks,locs] = helperfindpeaks(histVal);
startYs = yvals(locs);

laneWidth = 4;
[startLanePoints,detectedPeaks] = helperInitialWindow(startYs,peaks, laneWidth);

plot(startYs,peaks, '*r')
plot(startLanePoints,detectedPeaks, '0g")
legend('Histogram', 'Peak', 'Detected Peaks', 'Location', 'North')

title('Peak Detection')

hold off
+ 104 Peak Detection
Zﬂ T T T T T
— — —Histogram
".|" + Peak
261 A\ Detected Peaks l
R
I
24T | J
by
I’ \ f
22} V% i 1
| - \ [
| \ i 1!
27 jl ! /_)K‘_ _ 1!\ i
\ ¥ %7
[v \,* N
\
18| ! Y N
/ ,
/ \
/ \
16 / .
/
/
1.4 : : : : '
3 2 1 0 -1 2 3

Window Search

Window search is used to detect lane points by sliding the windows along the lane curvature
direction. Window search consists of two steps:

* Window initialization

+ Sliding window

Window Initialization

The detected peaks help in the initialization of the search window. Initialize the search windows as
multiple bins with red and blue colors for left and right lanes respectively.

1-276

Lane Detection in 3-D Lidar Point Cloud

vBinRes 1;

hBinRes 0.8;

numVerticalBins = ceil((groundPts.XLimits(2) - groundPts.XLimits(1))/vBinRes);
laneStartX = linspace(groundPts.XLimits(1),groundPts.XLimits(2),numVerticalBins);

% Display bin windows

figure

pcshow(groundPts)

view(2)
helperDisplayBins(laneStartX,startLanePoints(1l),hBinRes/2,groundPts, 'red"');
helperDisplayBins(laneStartX,startLanePoints(2),hBinRes/2,groundPts, 'blue');
title('Initialized Sliding Windows')

Initialized Sliding Windows

[}
]

., BN
:Il 1

l

0

BRI
10 15

0
o,

Sliding Window

The sliding bins are initialized from the bin locations, and iteratively move along the ego vehicle
(positive X-axis) direction. The helperDetectLanes helper function detects lane points and
visualizes the sliding bins. Consecutive bins slide along the Y-axis based upon the intensity values
inside the previous bin.

At regions where the lane points are missing, the function predicts the sliding bins using second-
degree polynomial. This condition commonly arises when there are moving object's crossing the
lanes. The sliding bins are yellow and the bins that are predicted using the polynomial are green.

display = true;

lanes = helperDetectLanes(groundPts,hBinRes,
numVerticalBins,startLanePoints,display);

1-277

1 Lidar Toolbox Featured Examples

Sliding Window Search

% Plot final lane points
lanel = lanes{1};
lane2 = lanes{2};

figure

pcshow(groundPts)

title('Detected Lane Points')

hold on
= plot3(lanel(:,1),lanel(:,2),lanel(:,3), ;
= plot3(lane2(:,1),lane2(:,2),lane2(:,3), " '*r');

hold off

view(2)

lgnd = legend([pl p2],{'Left Lane Points', 'Right Lane Points'});

set(lgnd, 'color', 'White', 'Location', 'southoutside"')

1-278

Lane Detection in 3-D Lidar Point Cloud

Detected Lane Points

Left Lane Points
* Right Lane Points

Lane Fitting

Lane fitting involves estimating a polynomial curve on the detected lane points. These polynomials
are used along with parallel lane constraint for lane fitting.

Parabolic Polynomial Fitting

The polynomial is fitted on XY points using a 2-degree polynomial represented as ax? + bx + ¢, where
a, b, and c are polynomial parameters. To perform curve fitting, use the helperFitPolynomial
helper function, which also handles outliers using the random sample consensus (RANSAC)
algorithm. To estimate the 3-D lane points, extract the parameters from the plane model created
during the preprocessing step. The plane model is represented as ax + by + cz + d = 0, where the Z-
coordinate is unknown. Estimate the Z-coordinate by substituting the X- and Y-coordinates in the
plane equation.

[P1,errorl]
[P2,error2]

helperFitPolynomial(lanel(:,1:2),2,0.1);
helperFitPolynomial(lane2(:,1:2),2,0.1);

xval = linspace(5,40,80);
yvall polyval(P1,xval);
yval2 polyval(P2,xval);

% Z-coordinate estimation
modelParams = model.Parameters;
zWorldl (-modelParams(1l)*xval - modelParams(2)*yvall - modelParams(4))/modelParams(3);

zWorld2 (-modelParams(1l)*xval - modelParams(2)*yval2 - modelParams(4))/modelParams(3);

’

1-279

1 Lidar Toolbox Featured Examples

% Visualize fitted lane

figure

pcshow(croppedPtCloud)

title('Fitted Lane Polynomial')

hold on

pl = plot3(xval,yvall,zWorldl, 'y', 'LineWidth',0.2);
p2 = plot3(xval,yval2,zWorld2, 'r', 'LineWidth',0.2);
lgnd = legend([pl p2],{'Left Lane Points', 'Right Lane Points'});
set(lgnd, 'color', 'White', 'Location', 'southoutside"')
view(2)

hold off

Fitted Lane Polynomial

Left Lane Foints
Right Lane Foints

Parallel Lane Fitting

The lanes are usually parallel to each other along the road. To make the lane fitting robust, use this
parallel constraint. When fitting the polynomials, the helperFitPolynomial helper function also
computes, the fitting error. Update the lanes having erroneous points with the new polynomial.
Update this polynomial by shifting it along the Y-axis.

lane3dl
lane3d2

[xval' yvall' zWorldl'];
[xval' yval2' zWorld2'];

% Shift the polynomial with a high score along the Y-axis towards
% the polynomial with a low score
if errorl > error2

lanePolynomial = P2;

if lane3dl(1,2) > 0

1-280

Lane Detection in 3-D Lidar Point Cloud

lanePolynomial(3)
else
lanePolynomial(3)
end
lane3dl1(:,2) = polyval(lanePolynomial, lane3dl(:,1));
lanePolynomials = [lanePolynomial; P2];
else
lanePolynomial = P1;
if lane3d2(1,2) > 0
lanePolynomial(3)
else
lanePolynomial(3)
end
lane3d2(:,2) = polyval(lanePolynomial, lane3d2(:,1));
lanePolynomials = [P1l; lanePolynomial]

lane3d2(1,2) + laneWidth;

lane3d2(1,2) - laneWidth;

lane3dl(1,2) + laneWidth;

lane3d1(1,2) - laneWidth;

end

% Visualize lanes after parallel fitting

figure

pcshow(ptCloud)

axis([0 50 -15 15 -5 5])

hold on

pl = plot3(lane3dl(:,1),lane3d1(:,2),lane3d1(:,3),'y", 'LineWidth',0.2);
p2 = plot3(lane3d2(:,1),lane3d2(:,2),lane3d2(:,3),'r"', 'LineWidth',0.2);
view([-90 90])

title('Fitted Lanes')

lgnd = legend([pl p2],{'Left Lane Points', 'Right Lane Points'});
set(lgnd, 'color', 'White', 'Location', 'southoutside"')

hold off

1-281

1 Lidar Toolbox Featured Examples

1-282

Fitted Lanes

-10

Left Lane Points

Right Lane Points

Lane Tracking

Lane tracking helps in stabilizing the lane curvature caused by sudden jerks and drifts. These
changes can occur because of missing lane points, vehicles moving over the lanes, and erroneous
lane detection. Lane tracking is a two-step process:

* Track lane polynomial parameters(a, b)to control the curvature of the polynomial.

* Track the start points coming from peak detection. This parameter is denoted as ¢ in the
polynomial.

These parameters are updated using a Kalman filter with a constant acceleration motion model. To
initiate a Kalman filter, use the configureKalmanFilter.

% Initial values

curvelnitialParameters = lanePolynomials(1,1:2);
driftInitialParameters = lanePolynomials(:,3)"
initialEstimateError = [1 1 1]*1le-1;
motionNoise = [1 1 1]*1le-7;

measurementNoise = 10;

% Configure Kalman filter

curveFilter = configureKalmanFilter('ConstantAcceleration',
curveInitialParameters,initialEstimateError,motionNoise,measurementNoise);

driftFilter = configureKalmanFilter('ConstantAcceleration’,
driftInitialParameters,initialEstimateError,motionNoise,measurementNoise);

https://www.mathworks.com/help/vision/ref/configurekalmanfilter.html

Lane Detection in 3-D Lidar Point Cloud

Loop Through Data

Loop through and process the lidar data by using the helperLaneDetector helper class. This
helper class implements all previous steps, and also performs additional preprocessing to remove the
vehicles from the point cloud. This ensures that the detected ground points are flat and the plane
model is accurate. The class method detectLanes detects and extracts the lane points for the left
and right lane as a two-element cell array, where the first element corresponds to the left lane and
the second element to the right lane.

% Initialize the random number generator

rng(2020)

numFrames = numel(lidarData);

detector = helperLaneDetector('ROI',[5 40 -3 3 -4 1]);

% Turn on display
player = pcplayer([0 50],[-15 15],[-5 5]);

drift = zeros(numFrames,1);
filteredDrift = zeros(numFrames,1);
curveSmoothness = zeros(numFrames,1);
filteredCurveSmoothness = zeros(numFrames,1);
for i = l:numFrames

ptCloud = lidarData{i};

% Detect lanes
detectLanes(detector,ptCloud);

% Predict polynomial from Kalman filter
predict(curveFilter);
predict(driftFilter);

% Correct polynomial using Kalman filter

lanePolynomials = detector.LanePolynomial;

drift(i) = mean(lanePolynomials(:,3));

curveSmoothness (i) mean(lanePolynomials(:,1));
updatedCurveParams correct(curveFilter,lanePolynomials(1,1:2));
updatedDriftParams correct(driftFilter, lanePolynomials(:,3)");

% Update lane polynomials
updatedLanePolynomials = [repmat(updatedCurveParams,[2 1]),updatedDriftParams'];

% Estimate new lane points with updated polynomial

lanes = updatelLanePolynomial(detector,updatedLanePolynomials);
filteredDrift(i) = mean(updatedLanePolynomials(:,3));
filteredCurveSmoothness(i) = mean(updatedLanePolynomials(:,1));

% Visualize lanes after parallel fitting
ptCloud.Color = uint8(repmat([0@ O 255],ptCloud.Count,1));
lane3dPcl = pointCloud(lanes{1l});
lane3dPcl.Color = uint8(repmat([255 0 0],lane3dPcl.Count,1));
lanePc = pccat([ptCloud lane3dPcl]);
lane3dPc2 = pointCloud(lanes{2});
lane3dPc2.Color = uint8(repmat([255 255 0], lane3dPc2.Count,1));
lanePc = pccat([lanePc lane3dPc2]);
view(player, lanePc)

end

1-283

1 Lidar Toolbox Featured Examples

4 = =] X
Eile Edit Wiew |nset Tools Desktop Window Help N
N de | @ 0| L E

Results

To analyze the lane detection results, compare them against the tracked lane polynomials by plotting
them in figures. Each plot compares the parameters with and without the Kalman filter. The first plot
compares the drift of lanes along the Y-axis, and the second plot compares the smoothness of the lane
polynomials. Smoothness is defined as the rate of change of the slope of the lane curve.

figure

plot(drift)

hold on

plot(filteredDrift)

hold off

title('Lane Drift Along Y-axis')

legend('Drift Values', 'Filtered Drift Values')

1-284

Lane Detection in 3-D Lidar Point Cloud

Lane Drift Along Y-axis
Drift Values
Filtered Drift Values

—

figure

plot(curveSmoothness)

hold on

plot(filteredCurveSmoothness)

hold off

title('Curve Smoothness')

legend('Curve Smoothness','Filtered Curve Smoothness')

1-285

1 Lidar Toolbox Featured Examples

1-286

Curve Smoothness
0.015

Curve Smoothness

Filtered Curve Smoothness
001 b

0.005 N

RN <
N it gl

-0.005 | . ’ .

e

0.0 r 7

-0.015

—D_ Dz i i i i i
0 50 100 150 200 250 300

Summary

This example has shown you how to detect lanes on the intensity channel of point clouds coming from
lidar sensor. You have also learned how to fit a 2-D polynomial on detected lane points, and leverage
ground plane model to estimate 3-D lane points. You have also used Kalman filter tracking to further
improve lane detection.

Supporting Functions

The helperLoadData helper function loads the lidar data set into the MATLAB workspace.

function reflidarData = helperGetDataset()

lidarDataTarFile = matlab.internal.examples.downloadSupportFile(
‘lidar', 'data/WPI LidarData.tar.gz');

[outputFolder,~,~] = fileparts(lidarDataTarFile);

% Check if tar.gz file is downloaded, but not uncompressed

if ~exist(fullfile(outputFolder, 'WPI LidarData.mat'),'file")
untar(lidarDataTarFile,outputFolder);

end

% Load lidar data
load(fullfile(outputFolder, 'WPI LidarData.mat'),'lidarData');

% Select region with a prominent intensity value
reflidarData = cell(300,1);
count = 1;

Lane Detection in 3-D Lidar Point Cloud

roi = [-50 50 -30 30 -inf inf];

for i = 81:380
pc = lidarData{i};
ind = findPointsInROI(pc,roi);
reflidarData{count} = select(pc,ind);
count = count+1;

end

end

This helperInitialWindow helper function computes the starting points of the search window
using the detected histogram peaks.

function [yval,detectedPeaks] = helperInitialWindow(yvals,peaks, laneWidth)
leftLanesIndices = yvals >= 0;
rightLanesIndices = yvals < 0;
leftLaneYs = yvals(leftLanesIndices);
rightLaneYs = yvals(rightLanesIndices);
peaksLeft = peaks(leftLanesIndices);
peaksRight = peaks(rightLanesIndices);
diff = zeros(sum(leftLanesIndices),sum(rightLanesIndices));
for i = 1:sum(leftLanesIndices)
for j = l:sum(rightLanesIndices)
diff(i,j) = abs(laneWidth - (leftLaneYs(i) - rightLaneYs(j)));
end
end
[~,minIndex] = min(diff(:));
[row,col] = ind2sub(size(diff),minIndex);
yval = [leftLaneYs(row) rightLaneYs(col)];
detectedPeaks = [peaksLeft(row) peaksRight(col)];
estimatedLaneWidth = leftLaneYs(row) - rightLaneYs(col);

% If the calculated lane width is not within the bounds,
% return the lane with highest peak
if abs(estimatedLaneWidth - laneWidth) > 0.5
if max(peaksLeft) > max(peaksRight)
yval = [leftLaneYs(maxLeftInd) NaN];
detectedPeaks = [peaksLeft(maxLeftInd) NaN];
else
yval = [NaN rightLaneYs(maxRightInd)];
detectedPeaks = [NaN rightLaneYs(maxRightInd)];
end
end
end

This helperFitPolynomial helper function fits a RANSAC-based polynomial to the detected lane
points and computes the fitting score.

function [P,score] = helperFitPolynomial(pts,degree,resolution)
P = fitPolynomialRANSAC(pts,degree, resolution);

ptsSquare = (polyval(P,pts(:,1)) - pts(:,2)).72;

score = sqrt(mean(ptsSquare));

end

This helperComputeHistogram helper function computes the histogram of the intensity values of
the point clouds.

function [histVal,yvals] = helperComputeHistogram(ptCloud,histogramBinResolution)
numBins = ceil((ptCloud.YLimits(2) - ptCloud.YLimits(1l))/histogramBinResolution);

1-287

1 Lidar Toolbox Featured Examples

1-288

histVal = zeros(1l,numBins-1);
binStartY = linspace(ptCloud.YLimits(1),ptCloud.YLimits(2),numBins);
yvals = zeros(1l,numBins-1);
for i = 1:numBins-1
roi [-inf 15 binStartY(i) binStartY(i+1) -inf inf];
ind findPointsInROI(ptCloud, roi);
subPc = select(ptCloud,ind);
if subPc.Count
histVal(i) = sum(subPc.Intensity);
yvals(i) = (binStartY(i) + binStartY(i+l))/2;

end
end
end

This helperfindpeaks helper function extracts peaks from the histogram values.

function [pkHistVal,pkIdx] = helperfindpeaks(histVal)
pkIdxTemp = (1l:size(histVal,h2))"';

histValTemp = [NaN; histVal'; NaN];

tempIdx = (1l:length(histValTemp))."';

% keep only the first of any adjacent pairs of equal values (including NaN)

yFinite = ~isnan(histValTemp);

iNeq = [1; 1 + find((histValTemp(l:end-1) ~= histValTemp(2:end)) & ...
(yFinite(l:end-1) | yFinite(2:end)))];

tempIdx = tempIdx(iNeq);

% Take the sign of the first sample derivative
s = sign(diff(histValTemp(tempIdx)));

% Find local maxima
maxIdx = 1 + find(diff(s) < 0);

% Index into the original index vector without the NaN bookend
pkIdx = tempIdx(maxIdx) - 1;

% Fetch the coordinates of the peak
pkHistVal = histVal(pkIdx);

pkIdx = pkIdxTemp(pkIdx)"';

end

References

[1] Ghallabi, Farouk, Fawzi Nashashibi, Ghayath El-Haj-Shhade, and Marie-Anne Mittet. "LIDAR-
Based Lane Marking Detection for Vehicle Positioning in an HD Map." In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), 2209-14. Maui: IEEE, 2018. https://doi.org/
10.1109/ITSC.2018.8569951.

[2] Thuy, Michael and Fernando Leodn. "Lane Detection and Tracking Based on Lidar Data." Metrology
and Measurement Systems 17, no. 3 (2010): 311-322. https://doi.org/10.2478/v10178-010-0027-3.

Automate Ground Truth Labeling For Vehicle Detection Using PointPillars

Automate Ground Truth Labeling For Vehicle Detection Using
PointPillars

This example shows how to automate vehicle detections in a point cloud using a pretrained
pointPillarsObjectDetector in the Lidar Labeler. The example uses the
AutomationAlgorithm interface in the Lidar Labeler app to automate labeling.

Lidar Labeler App

Good ground truth data is crucial for the developing automated driving algorithms and evaluating
performance. However, creating and maintaining a diverse, high-quality, and labeled data set requires
significant effort. The Lidar Labeler app provides a framework to automate the labeling process
using the AutomationAlgorithm interface. You can create a custom algorithm and use it in the app
to label your entire data set. You can also edit the results to accommodate any challenging scenarios
missed by the algorithm.

In this example, you:

1 Use a pretrained pointPillarsObjectDetector to detect objects of class 'vehicle'.

2 (Create an automation algorithm that you can use in the Lidar Labeler app to automatically label
vehicles in the point cloud using the PointPillars object detector.

Detect Vehicles Using PointPillars Object Detector

Detect vehicles in a point cloud using a pretrained PointPillars object detector. For information on
how to train a PointPillars network, see “Lidar 3-D Object Detection Using PointPillars Deep
Learning” on page 1-189 example. You can improve the network performance by iteratively using
custom training data while training the network.

Use the pretrained object detector to detect the vehicles:

* Read the point cloud.
* Run the detector on the point cloud to detect bounding boxes.
» Display the point cloud with bounding boxes.

% Load pretrained detector.
pretrainedDetector = load("pretrainedPointPillarsDetector.mat","detector");
detector = pretrainedDetector.detector;

% Read the point cloud.
ptCloud = pcread("PandasetLidarData.pcd");

% Detect the bounding boxes.
[bboxes,~,~] = detect(detector,ptCloud);

% Display the detections on the point cloud.

figure

ax = pcshow(ptCloud.Location);
showShape("cuboid",bboxes, "Parent",ax, "Opacity",0.1,"Color","green","LineWidth",0.5)
hold on

zoom(ax,2.5)

title("Detected vehicles on Point Cloud")

1-289

1 Lidar Toolbox Featured Examples

Prepare Lidar Vehicle Detector Automation Class

Construct an automation class for the lidar vehicle detector algorithm. The class inherits from the
lidar.labeler.AutomationAlgorithm abstract base class. The base class defines properties and
signatures for methods that the app uses to configure and run the custom algorithm. The Lidar
Labeler app provides an initial automation class template. For more information, see “Create
Automation Algorithm for Labeling” on page 2-17. The LidarVehicleDetector class is based on
this template and provides you with a ready-to-use automation class for vehicle detection in a point
cloud. The comments of the class outline the basic steps needed to implement each API call.

Algorithm Properties

Step 1 contains properties that define the name and description of the algorithm and the directions
for using the algorithm.

% Step 1: Define the required properties describing the algorithm. This
% includes Name, Description, and UserDirections.
properties(Constant)

Name Algorithm Name
Character vector specifying the name of the algorithm.
ame = 'Lidar Vehicle Detector';

= o° o°

Description Algorithm Description
Character vector specifying the short description of the algorithm.
Description = 'Detect vehicles in point cloud using the pretrained PointPillars object d

o o°

1-290

Automate Ground Truth Labeling For Vehicle Detection Using PointPillars

end

UserDirections Algorithm Usage Directions
Cell array of character vectors specifying directions for
algorithm users to follow to use the algorithm.
UserDirections = {['ROI Label Definition Selection: select one of '
"the ROI definitions to be labeled'],
['Run: Press RUN to run the automation algorithm. '],
['Review and Modify: Review automated labels over the interval ',
'using playback controls. Modify/delete/add ROIs that were not '
'satisfactorily automated at this stage. If the results are '
'satisfactory, click Accept to accept the automated labels.'],
['Change Settings and Rerun: If automated results are not '
'satisfactory, you can try to re-run the algorithm with '
‘different settings. To do so, click Undo Run to undo '

o® o o°

‘current automation run, click Settings, make changes to Settings,'

'and press Run again.'], ...

['Accept/Cancel: If the results of automation are satisfactory,
"click Accept to accept all automated labels and return to '
'manual labeling. If the results of automation are not '
'satisfactory, click Cancel to return to manual labeling '
'without saving the automated labels.']};

Custom Properties

Step 2 contains the custom properties needed for the core algorithm.

Step 2: Define properties you want to use during the algorithm
execution.

properties

end

SelectedLabelName

Name of the selected label. Vehicles detected by the algorithm
% are assigned this variable name.
SelectedLabelName

PretrainedDetector
PretrainedDetector saves the pretrained PointPillars object
detector.

PretrainedDetector

o® o o°

ConfidenceThreshold

Specify the confidence threshold to use only detections with
confidence scores above this value.
ConfidenceThreshold = 0.45;

o® o o°

Function Definitions

Step 3 deals with function definitions.

The checkSignalType function checks if the signal data is supported for automation. The lidar
vehicle detector supports signals of the type PointCloud.

function isValid = checkSignalType(signalType)
% Only point cloud signal data is valid for the Lidar Vehicle

1-291

1 Lidar Toolbox Featured Examples

1-292

% detector algorithm.
isValid = (signalType == vision.labeler.loading.SignalType.PointCloud);
end

The checkLabelDefinition function checks if the label definition is the appropriate type for
automation. The lidar vehicle detector requires the Cuboid label type.

function isValid = checkLabelDefinition(~, labelDef)
% Only cuboid ROI label definitions are valid for the Lidar
% vehicle detector algorithm.
isValid = labelDef.Type == labelType.Cuboid;

end

The checkSetup function checks if an ROI label definition is selected for automation.

function isReady = checkSetup(algObj)
% Is there one selected ROI Label definition to automate.
isReady = ~isempty(algObj.SelectedLabelDefinitions);

end

The settingsDialog function obtains and modifies the properties defined in Step 2. This API call
lets you create a dialog box that opens when you click the Settings icon in the Automate tab. To
create this dialog box, use the dialog function to quickly create a simple modal window to optionally
modify the confidence threshold. The lidarVehicleDetectorSettings method contains the code
for settings and input validation steps.

function settingsDialog(algObj)
% Invoke dialog with option for modifying the confidence threshold.
lidarVehicleDetectorSettings(algObj)

end

Execution Functions

Step 4 specifies the execution functions. The initialize function populates the initial algorithm
state based on the existing labels in the app. In this example, the initialize function performs the
following steps:

* Store the name of the selected label definition.

* Load the pretrained pointPillarsObjectDetector and save it to the PretrainedDetector
property.

function initialize(algObj,~)
% Store the name of the selected label definition. Use this
% name to label the detected vehicles.
algObj.SelectedLabelName = algObj.SelectedLabelDefinitions.Name;

% Load the pretrained pointPillarsObjectDetector.
pretrainedDetector = load('pretrainedPointPillarsDetector.mat', 'detector');
algObj.PretrainedDetector = pretrainedDetector.detector;

end

The run function defines the core lidar vehicle detector algorithm of this automation class. The run
function is called for each frame of the point cloud sequence, and expects the automation class to
return a set of labels. You can extend the algorithm to any category the network is trained on. In this
example, the network detects the objects of class 'Vehicle'.

function autoLabels = run(algObj,pointCloud)
bBoxes = [1;

Automate Ground Truth Labeling For Vehicle Detection Using PointPillars

for i = 1:2
if i == 2
% Rotate the point cloud by 180 degrees.
thetha = pi;
rot = [cos(thetha) sin(thetha) 0;
-sin(thetha) cos(thetha) 0;
0 0 11;
trans = [0, O, 0O];
tform = rigid3d(rot, trans);
pointCloud = pctransform(pointCloud, tform);
end

% Detect the bounding boxes using the pretrained detector.
[box,~,~] = detect(algObj.PretrainedDetector,pointCloud,
"Threshold",algObj.ConfidenceThreshold);

if ~isempty(box)

if i == 2
box(:,1) = -box(:,1);
box(:,2) = -box(:,2);
box(:,9) = -box(:,9);
end

bBoxes = [bBoxes;box];
end
end

if ~isempty(bBoxes)
% Add automated labels at bounding box locations detected
% by the vehicle detector, of type Cuboid and with the name
% of the selected label.
autoLabels.Name algObj.SelectedLabelName;
autolLabels.Type labelType.Cuboid;
autoLabels.Position bBoxes;

else
autoLabels = [];

end

end

The terminate function handles any cleanup or tear-down required after the automation is done.
This function is invoked after run has been invoked on the last frame in the specified interval or after
algorithm stops running. LidarVehicleDetector algorithm does not require resetting any of its
parameters, so the function is empty.

Use Lidar Vehicle Detector Automation Class in App

Implement the properties and methods define earlier in the LidarVehicleDetector automation
algorithm class file. Use the class in the Lidar Labeler app.

First, create the folder structure +lidar/+labeler under the current folder, and copy the
automation class into the path.

mkdir('+lidar/+labeler');

copyfile(fullfile(matlabroot, 'examples', 'lidar', 'main', 'LidarVehicleDetector.m'),
'+lidar/+labeler');

Download the point cloud sequence (PCD). For illustration purposes, this example uses PandaSet data
set from Hesai and Scale [1 on page 1-0]. PandaSet contains point cloud scans of the various city

1-293

1 Lidar Toolbox Featured Examples

scenes captured using the Pandar 64 sensor. Execute the following code block to download and save
the lidar data in a temporary folder. Depending on your internet connection, the download process
can take some time. The code suspends MATLAB® execution until the download process is complete.

Alternatively, you can download the data set to your local disk using your web browser and extract
the file.

Download the point cloud sequence to a temporary location.

outputFolder = fullfile(tempdir, 'Pandaset');
lidarDataTarFile = fullfile(outputFolder, 'Pandaset LidarData.tar.gz');

if ~exist(lidarDataTarFile, 'file')

mkdir(outputFolder);

disp('Downloading Pandaset Lidar driving data (5.2BG)...");
component = 'lidar';

filename = 'data/Pandaset LidarData.tar.gz';

lidarDataTarFile = matlab.internal.examples.downloadSupportFile(component, filename);
untar(lidarDataTarFile,outputFolder);
end

% Check if tar.gz file is downloaded, but not uncompressed.

if ~exist(fullfile(outputFolder, 'Lidar'),'file')
untar(lidarDataTarFile,outputFolder);

end

Open the Lidar Labeler app and load the point cloud sequence.

pointCloudDir = fullfile(outputFolder, 'Lidar');
lidarLabeler(pointCloudDir);

App displays the point cloud data and the time range as the image below.

1-294

Automate Ground Truth Labeling For Vehicle Detection Using PointPillars

[Lidar

0C: 0000000 00: 00.J0020 42: 40.00000 42:40.0000C ol e —

Stat Time Current Cnd Time Max Time

In the ROI Labels tab in the left pane, click Label. Define an ROI label with the name Vehicle and
the Cuboid. Optionally, you can select a color. Click OK.

4. Define New ROI Label — X
Label Name Color
Vehicle Cuboid L
Group
Maone e

Label Description (Optional)

Ok Cancel

1-295

1 Lidar Toolbox Featured Examples

This example runs the algorithm on a subset of the Pandaset point cloud frames. Specify the time
interval from 0 to 15 seconds for which the app runs the algorithm. Specify 15 in the End Time box.
The range slider and text boxes are set from 0 to 15 seconds. The app displays and applies the
automation algorithm only on the frames in this interval.

=

03: 00.00000 00: 00.00020 0c: |15.0000C 42.40.00000

“*_*' M m “_” |ﬂ| Zoom In Time Range

Start Time Current Enc Time Max Tima

Under Select Algorithm, select Refresh list. Then, click on Select Algorithm and select Lidar

Vehicle Detector. If you do not see this option, verify that the current working folder has a folder
called +lidar/+labeler, with a file named LidarVehicleDetector.min it.

Algorithm: ’
1 Select Algorithm ¥

e SO S LW Al mnse |~k

Lidar Object Tracker
Track one or more point cloud
| objects using Unscented Kalman Filter.

Point Cloud Temporal Interpolator
Estimate cuboids in intermediate point cloud frames
using interpolation between cuboid ROIls in key frames.

Lidar Vehicle Detector
Detect vehicles in point cloud using
the pretrained PointPillars object detector.

g7 Add Algorithm >

& Refresh list

Click on Automate. The app opens an automation session for the selected signals and displays
instructions to use the algorithm.

1-296

Automate Ground Truth Labeling For Vehicle Detection Using PointPillars

Lidar

[Lidar Venicle Detector |

3,

00: 0000000 00: 00.00000 00: 42:40.00000

Zoom Qut Time Range ‘

Start Time Current End Time Max Time

ROI Label Definition Selection: select one of the ROI definitions to be
labeled

Run: Press RUN to run the automation algerithm.

Review and Modify: Review automated labels over the interval using
playback controls. Modify/delete/add ROls that were not satisfactorily
automated at this stage. If the results are satisfactory. click Accept to
accept the automated labels.

Change Settings and Rerun: If automated results are not satisfactory, you
«can try to re-run the algorithm with different settings. To do so, click Undo
Run to undo current automation run, click Settings, make changes to
Settings,and press Run again.

Accept/Cancel: If the results of automation are satisfactory, click Accept
to accept all automated labels and return to manual labeling. If the results
of automation are not satisfactory, click Cancel to return to manual
|abeling without saving the automated labels.

Click Settings, and in the dialog box that opens, modify the parameters if needed and click OK.

4 Vehicle Detector Settings o

Confidence Threshold (Range: 0-1) 0.45

8] Cancel

Click on Run. The app runs the algorithm on each frame of the sequence and detects vehicles by
using the Vehicle label type. After the app completes the automation run, you can use the slider or
arrow keys to scroll through the sequence to visualize the results or segmented labels. Use the zoom,
pan, and 3-D rotation options to view and rotate the point cloud. You can manually tweak the results
by adjusting the detected bounding boxes or adding new bounding boxes.

1-297

1 Lidar Toolbox Featured Examples

When you are satisfied with the detected vehicle bounding boxes for the entire sequence, click

Accept. You can then continue to manually adjust labels or export the labeled ground truth to the
MATLAB workspace.

You can use the concepts described in this example to create your own custom automation algorithms
and extend the functionality of the app.

References

[1] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset

1-298

https://scale.com/open-datasets/pandaset

Track-Level Fusion of Radar and Lidar Data

Track-Level Fusion of Radar and Lidar Data

This example shows you how to generate an object-level track list from measurements of a radar and
a lidar sensor and further fuse them using a track-level fusion scheme. You process the radar
measurements using an extended object tracker and the lidar measurements using a joint
probabilistic data association (JPDA) tracker. You further fuse these tracks using a track-level fusion
scheme. The schematic of the workflow is shown below.

Unclustered
Detections
2-D Rectangular Tracks
Fused 3-D
Cubsaid Tracks
Paint Clusterad 3-D Cubaid
Cloud Bounding Box Tracks

Datections

See “Fusion of Radar and Lidar Data Using ROS” (ROS Toolbox) for an example of this algorithm
using recorded data on a rosbag.

Setup Scenario for Synthetic Data Generation

The scenario used in this example is created using drivingScenario (Automated Driving Toolbox).
The data from radar and lidar sensors is simulated using drivingRadarDataGenerator
(Automated Driving Toolbox) and lidarPointCloudGenerator (Automated Driving Toolbox),
respectively. The creation of the scenario and the sensor models is wrapped in the helper function
helperCreateRadarLidarScenario. For more information on scenario and synthetic data
generation, refer to “Create Driving Scenario Programmatically” (Automated Driving Toolbox).

% For reproducible results
rng(2021);

% Create scenario, ego vehicle and get radars and lidar sensor
[scenario, egoVehicle, radars, lidar] = helperCreateRadarLidarScenario;

The ego vehicle is mounted with four 2-D radar sensors. The front and rear radar sensors have a field
of view of 45 degrees. The left and right radar sensors have a field of view of 150 degrees. Each radar
has a resolution of 6 degrees in azimuth and 2.5 meters in range. The ego is also mounted with one 3-
D lidar sensor with a field of view of 360 degrees in azimuth and 40 degrees in elevation. The lidar
has a resolution of 0.2 degrees in azimuth and 1.25 degrees in elevation (32 elevation channels).
Visualize the configuration of the sensors and the simulated sensor data in the animation below.
Notice that the radars have higher resolution than objects and therefore return multiple
measurements per object. Also notice that the lidar interacts with the low-poly mesh of the actor as
well as the road surface to return multiple points from these objects.

1-299

1 Lidar Toolbox Featured Examples

Front View Top View

1-300

B ourd Truth
Paint Cloud
© [Radar Deleclions

Radar Tracking Algorithm

As mentioned, the radars have higher resolution than the ohjects and return multiple detections per
object. Conventional trackers such as Global Nearest Neighbor (GNN) and Joint Probabilistic Data
Association (JPDA) assume that the sensors return at most one detection per object per scan.
Therefore, the detections from high-resolution sensors must be either clustered before processing it
with conventional trackers or must be processed using extended object trackers. Extended object
trackers do not require pre-clustering of detections and usually estimate both kinematic states (for
example, position and velocity) and the extent of the objects. For a more detailed comparison
between conventional trackers and extended object trackers, refer to the “Extended Object Tracking
of Highway Vehicles with Radar and Camera” (Sensor Fusion and Tracking Toolbox) example.

In general, extended object trackers offer better estimation of objects as they handle clustering and
data association simultaneously using temporal history of tracks. In this example, the radar
detections are processed using a Gaussian mixture probability hypothesis density (GM-PHD) tracker
(trackerPHD (Sensor Fusion and Tracking Toolbox) and gmphd (Sensor Fusion and Tracking
Toolbox)) with a rectangular target model. For more details on configuring the tracker, refer to the
"GM-PHD Rectangular Object Tracker" section of the “Extended Object Tracking of Highway Vehicles
with Radar and Camera” (Sensor Fusion and Tracking Toolbox) example.

The algorithm for tracking objects using radar measurements is wrapped inside the helper class,
helperRadarTrackingAlgorithm, implemented as a System object™. This class outputs an array
of objectTrack (Sensor Fusion and Tracking Toolbox) objects and define their state according to
the following convention:

Track-Level Fusion of Radar and Lidar Data

[y 58w L W]

radarTrackingAlgorithm = helperRadarTrackingAlgorithm(radars);
Lidar Tracking Algorithm

Similar to radars, the lidar sensor also returns multiple measurements per object. Further, the sensor
returns a large number of points from the road, which must be removed before used as inputs for an
object-tracking algorithm. While lidar data from obstacles can be directly processed via extended
object tracking algorithm, conventional tracking algorithms are still more prevalent for tracking
using lidar data. The first reason for this trend is mainly observed due to higher computational
complexity of extended object trackers for large data sets. The second reason is the investments into
advanced Deep learning-based detectors such as PointPillars [1], VoxelNet [2] and PIXOR [3], which
can segment a point cloud and return bounding box detections for the vehicles. These detectors can
help in overcoming the performance degradation of conventional trackers due to improper clustering.

In this example, the lidar data is processed using a conventional joint probabilistic data association
(JPDA) tracker, configured with an interacting multiple model (IMM) filter. The pre-processing of lidar
data to remove point cloud is performed by using a RANSAC-based plane-fitting algorithm and
bounding boxes are formed by performing a Euclidian-based distance clustering algorithm. For more
information about the algorithm, refer to the “Track Vehicles Using Lidar: From Point Cloud to Track
List” (Sensor Fusion and Tracking Toolbox) example. Compared the linked example, the tracking is
performed in the scenario frame and the tracker is tuned differently to track objects of different sizes.
Further the states of the variables are defined differently to constrain the motion of the tracks in the
direction of its estimated heading angle.

The algorithm for tracking objects using lidar data is wrapped inside the helper class,
helperLidarTrackingAlgorithm implemented as System object. This class outputs an array of

1-301

1 Lidar Toolbox Featured Examples

1-302

objectTrack (Sensor Fusion and Tracking Toolbox) objects and defines their state according to the
following convention:

[tys@wszziLWH)|

The states common to the radar algorithm are defined similarly. Also, as a 3-D sensor, the lidar
tracker outputs three additional states, =, Z and I, which refer to z-coordinate (m), z-velocity (m/s),
and height (m) of the tracked object respectively.

lidarTrackingAlgorithm = helperLidarTrackingAlgorithm(lidar);

Set Up Fuser, Metrics, and Visualization
Fuser

Next, you will set up a fusion algorithm for fusing the list of tracks from radar and lidar trackers.
Similar to other tracking algorithms, the first step towards setting up a track-level fusion algorithm is
defining the choice of state vector (or state-space) for the fused or central tracks. In this case, the
state-space for fused tracks is chosen to be same as the lidar. After choosing a central track state-
space, you define the transformation of the central track state to the local track state. In this case,
the local track state-space refers to states of radar and lidar tracks. To do this, you use a
fuserSourceConfiguration (Sensor Fusion and Tracking Toolbox) object.

Define the configuration of the radar source. The helperRadarTrackingAlgorithm outputs tracks
with SourceIndex setto 1. The Sourcelndex is provided as a property on each tracker to uniquely
identify it and allows a fusion algorithm to distinguish tracks from different sources. Therefore, you
set the SourceIndex property of the radar configuration as same as those of the radar tracks. You
set IsInitializingCentralTracks to true to let that unassigned radar tracks initiate new
central tracks. Next, you define the transformation of a track in central state-space to the radar state-
space and vice-versa. The helper functions central2radar and radar2central perform the two
transformations and are included at the end of this example.

radarConfig = fuserSourceConfiguration('SourcelIndex',1,...
'IsInitializingCentralTracks',true,...
'CentralToLocalTransformFcn',@central2radar, ...
'"LocalToCentralTransformFcn',@radar2central);

Define the configuration of the lidar source. Since the state-space of a lidar track is same as central
track, you do not define any transformations.

lidarConfig = fuserSourceConfiguration('SourcelIndex',2,...
'IsInitializingCentralTracks', true);

The next step is to define the state-fusion algorithm. The state-fusion algorithm takes multiple states
and state covariances in the central state-space as input and returns a fused estimate of the state and
the covariances. In this example, you use a covariance intersection algorithm provided by the helper
function, helperRadarLidarFusionFcn. A generic covariance intersection algorithm for two
Gaussian estimates with mean # and covariance * can be defined according to the following
equations:

P!_.I' —EI‘|_P|_ I+!I"3P_:l 1

R .I”_r[!l"ll”| I-l'| 1 H’g.l”-_.l l.l'-_r}

Track-Level Fusion of Radar and Lidar Data

where ZF and FF are the fused state and covariance and *1 and 2 are mixing coefficients from each
estimate. Typically, these mixing coefficients are estimated by minimizing the determinant or the
trace of the fused covariance. In this example, the mixing weights are estimated by minimizing the
determinant of positional covariance of each estimate. Furthermore, as the radar does not estimate 3-
D states, 3-D states are only fused with lidars. For more details, refer to the
helperRadarLidarFusionFcn function shown at the end of this script.

Next, you assemble all the information using a trackFuser object.

The state-space of central tracks is same as the tracks from the lidar,
therefore you use the same state transition function. The function is
defined inside the helperLidarTrackingAlgorithm class.

= lidarTrackingAlgorithm.StateTransitionFcn;

—h 0® o° o°

% Create a trackFuser object

fuser = trackFuser('SourceConfigurations',{radarConfig;lidarConfig}, ...
'StateTransitionFcn',f, ...
'ProcessNoise’,diag([1 3 1]),...
'HasAdditiveProcessNoise', false, ...
"AssignmentThreshold', [250 inf],...
'ConfirmationThreshold',[3 51, ...
'DeletionThreshold', [5 51,...
'StateFusion', 'Custom', ...
'"CustomStateFusionFcn',@helperRadarLidarFusionFcn);

Metrics

In this example, you assess the performance of each algorithm using the Generalized Optimal
SubPattern Assignment Metric (GOSPA) metric. You set up three separate metrics using
trackGOSPAMetric (Sensor Fusion and Tracking Toolbox) for each of the trackers. The GOSPA
metric aims to evaluate the performance of a tracking system by providing a scalar cost. A lower
value of the metric indicates better performance of the tracking algorithm.

To use the GOSPA metric with custom motion models like the one used in this example, you set the
Distance property to 'custom' and define a distance function between a track and its associated
ground truth. These distance functions, shown at the end of this example are
helperRadarDistance, and helperLidarDistance.

% Radar GOSPA

gospaRadar = trackGOSPAMetric('Distance', 'custom',...
'DistanceFcn',@helperRadarDistance, ...
'CutoffDistance',25);

% Lidar GOSPA

gospaLidar = trackGOSPAMetric('Distance', 'custom',...
'DistanceFcn',@helperLidarDistance,...
'CutoffDistance',25);

% Central/Fused GOSPA

gospaCentral = trackGOSPAMetric('Distance', 'custom',...
'DistanceFcn',@helperLidarDistance,...% State-space is same as lidar
'CutoffDistance',25);

Visualization

The visualization for this example is implemented using a helper class
helperLidarRadarTrackFusionDisplay. The display is divided into 4 panels. The display plots

1-303

1 Lidar Toolbox Featured Examples

1-304

the measurements and tracks from each sensor as well as the fused track estimates. The legend for
the display is shown below. Furthermore, the tracks are annotated by their unique identity (TrackID)
as well as a prefix. The prefixes "R", "L" and "F" stand for radar, lidar, and fused estimate,
respectively.

% Create a display.

% FollowActorID controls the actor shown in the close-up

% display

display = helperLidarRadarTrackFusionDisplay('FollowActorID',3);

% Show persistent legend
showLegend(display, scenario);

.Gmund Truth

B Radar Tracks

B Lidar Tracks

B Fused Tracks
Point Cloud

@ Radar Detections

* Lidar Bounding Box Detections

Run Scenario and Trackers

Next, you advance the scenario, generate synthetic data from all sensors and process it to generate
tracks from each of the systems. You also compute the metric for each tracker using the ground truth
available from the scenario.

% Initialzie GOSPA metric and its components for all tracking algorithms.
gospa = zeros(3,0);

missTarget = zeros(3,0);

falseTracks = zeros(3,0);

% Initialize fusedTracks

fusedTracks = objectTrack.empty(0,1);
% A counter for time steps elapsed for storing gospa metrics.
idx = 1;

Ground truth for metrics. This variable updates every time-step
automatically being a handle to the actors.

)
©
)

©

Track-Level Fusion of Radar and Lidar Data

groundTruth = scenario.Actors(2:end);

while advance(scenario)
% Current time
time = scenario.SimulationTime;

% Collect radar and lidar measurements and ego pose to track in
% scenario frame. See helperCollectSensorData below.
[radarDetections, ptCloud, egoPose] = helperCollectSensorData(egoVehicle, radars, lidar, tim

% Generate radar tracks
radarTracks = radarTrackingAlgorithm(egoPose, radarDetections, time);

% Generate lidar tracks and analysis information like bounding box

% detections and point cloud segmentation information

[lidarTracks, lidarDetections, segmentationInfo] = ...
lidarTrackingAlgorithm(egoPose, ptCloud, time);

% Concatenate radar and lidar tracks
localTracks = [radarTracks;lidarTracks];

% Update the fuser. First call must contain one local track
if ~(isempty(localTracks) && ~isLocked(fuser))

fusedTracks = fuser(localTracks,time);
end

% Capture GOSPA and its components for all trackers

[gospa(l,idx),~,~,~,missTarget(1,1idx),falseTracks(1l,idx)] = gospaRadar(radarTracks, groundTr
[gospa(2,idx),~,~,~,missTarget(2,1idx),falseTracks(2,idx)] = gospaLidar(lidarTracks, groundTri
[gospa(3,idx),~,~,~,missTarget(3,1idx), falseTracks(3,idx)] = gospaCentral(fusedTracks, ground

% Update the display

display(scenario, radars, radarDetections, radarTracks, .
lidar, ptCloud, lidarDetections, segmentationInfo, lidarTracks, ...
fusedTracks);

% Update the index for storing GOSPA metrics
idx = idx + 1;
end

% Update example animations
updateExampleAnimations(display);

Evaluate Performance

Evaluate the performance of each tracker using visualization as well as quantitative metrics. Analyze
different events in the scenario and understand how the track-level fusion scheme helps achieve a
better estimation of the vehicle state.

Track Maintenance

The animation below shows the entire run every three time-steps. Note that each of the three
tracking systems - radar, lidar, and the track-level fusion - were able to track all four vehicles in the
scenario and no false tracks were confirmed.

1-305

1 Lidar Toolbox Featured Examples

Front View (Time Step=1) Lidar Radar
b

& /
Rear View Close-up Display
I |
You can also quantitatively measure this aspect of the performance using "missed target" and "false
track" components of the GOSPA metric. Notice in the figures below that missed target component
starts from a higher value due to establishment delay and goes down to zero in about 5-10 steps for

each tracking system. Also, notice that the false track component is zero for all systems, which
indicates that no false tracks were confirmed.

f

% Plot missed target component
figure; plot(missTarget', 'LineWidth',2); legend('Radar','Lidar', 'Fused');
title("Missed Target Metric"); xlabel('Time step'); ylabel('Metric'); grid on;

% Plot false track component

figure; plot(falseTracks', 'LineWidth',2); legend('Radar','Lidar', 'Fused');
title("False Track Metric"); xlabel('Time step'); ylabel('Metric'); grid on;

1-306

Track-Level Fusion of Radar and Lidar Data

Metric

40

35

30

25

20

15

10

Missed Target Metric
Radar
Lidar | |
Fused
20 40 60 80 100 120
Time step

1-307

1 Lidar Toolbox Featured Examples

1-308

False Track Metric
'] T T T T T

Radar
0.8 1 Lidar | 7
Fused

Metric
[

__1 i i i i i
0 20 40 60 80 100 120

Time step

Track-level Accuracy

The track-level or localization accuracy of each tracker can also be quantitatively assessed by the
GOSPA metric at each time step. A lower value indicates better tracking accuracy. As there were no
missed targets or false tracks, the metric captures the localization errors resulting from state
estimation of each vehicle.

Note that the GOSPA metric for fused estimates is lower than the metric for individual sensor, which
indicates that track accuracy increased after fusion of track estimates from each sensor.

% Plot GOSPA
figure; plot(gospa', 'LineWidth',2); legend('Radar','Lidar"', 'Fused');
title("GOSPA Metric"); xlabel('Time step'); ylabel('Metric'); grid on;

Track-Level Fusion of Radar and Lidar Data

GOSPA Metric

40 T T

Radar
Lidar
35 1 Fused

30 n 7

Metric

10 1

5 i i i i i
0 20 40 60 80 100 120

Time step

Closely-spaced targets

As mentioned earlier, this example uses a Euclidian-distance based clustering and bounding box
fitting to feed the lidar data to a conventional tracking algorithm. Clustering algorithms typically
suffer when objects are closely-spaced. With the detector configuration used in this example, when
the passing vehicle approaches the vehicle in front of the ego vehicle, the detector clusters the point
cloud from each vehicle into a bigger bounding box. You can notice in the animation below that the
track drifted away from the vehicle center. Because the track was reported with higher certainty in
its estimate for a few steps, the fused estimated was also affected initially. However, as the
uncertainty increases, its association with the fused estimate becomes weaker. This is because the
covariance intersection algorithm chooses a mixing weight for each assigned track based on the
certainty of each estimate.

1-309

1 Lidar Toolbox Featured Examples

1-310

Front View (Time Step = 60) Lidar

This effect is also captured in the GOSPA metric. You can notice in the GOSPA metric plot above that
the lidar metric shows a peak around the 65th time step.

The radar tracks are not affected during this event because of two main reasons. Firstly, the radar
sensor outputs range-rate information in each detection, which is different beyond noise-levels for the
passing car as compared to the slower moving car. This results in an increased statistical distance
between detections from individual cars. Secondly, extended object trackers evaluate multiple
possible clustering hypothesis against predicted tracks, which results in rejection of improper
clusters and acceptance of proper clusters. Note that for extended object trackers to properly choose
the best clusters, the filter for the track must be robust to a degree that can capture the difference
between two clusters. For example, a track with high process noise and highly uncertain dimensions
may not be able to properly claim a cluster because of its premature age and higher flexibility to
account for uncertain events.

Targets at long range

As targets recede away from the radar sensors, the accuracy of the measurements degrade because
of reduced signal-to-noise ratio at the detector and the limited resolution of the sensor. This results in
high uncertainty in the measurements, which in turn reduces the track accuracy. Notice in the close-
up display below that the track estimate from the radar is further away from the ground truth for the
radar sensor and is reported with a higher uncertainty. However, the lidar sensor reports enough
measurements in the point cloud to generate a "shrunk" bounding box. The shrinkage effect modeled
in the measurement model for lidar tracking algorithm allows the tracker to maintain a track with
correct dimensions. In such situations, the lidar mixing weight is higher than the radar and allows the
fused estimate to be more accurate than the radar estimate.

Track-Level Fusion of Radar and Lidar Data

Front View (Time Step = 100) Lidar

Rear View Close-up Display

Summary

In this example, you learned how to set up a track-level fusion algorithm for fusing tracks from radar
and lidar sensors. You also learned how to evaluate a tracking algorithm using the Generalized
Optimal Subpattern Metric and its associated components.

Utility Functions
collectSensorData

A function to generate radar and lidar measurements at the current time-step.

function [radarDetections, ptCloud, egoPose] = helperCollectSensorData(egoVehicle, radars, lidar

% Current poses of targets with respect to ego vehicle
tgtPoses = targetPoses(egoVehicle);

radarDetections = cell(0,1);
for i = l:numel(radars)
thisRadarDetections = step(radars{i},tgtPoses,time);
radarDetections = [radarDetections;thisRadarDetections]; %#ok<AGROW>

end

% Generate point cloud from lidar
rdMesh = roadMesh(egoVehicle);
ptCloud = step(lidar, tgtPoses, rdMesh, time);

Compute pose of ego vehicle to track in scenario frame. Typically
obtained using an INS system. If unavailable, this can be set to
"origin" to track in ego vehicle's frame.

egoPose = pose(egoVehicle);

)
“©
)

©

o°

1-311

1 Lidar Toolbox Featured Examples

1-312

end
radar2cental
A function to transform a track in the radar state-space to a track in the central state-space.
function centralTrack = radar2central(radarTrack)
% Initialize a track of the correct state size
centralTrack = objectTrack('State',zeros(10,1), ...
'StateCovariance',eye(10));
% Sync properties of radarTrack except State and StateCovariance with
% radarTrack See syncTrack defined below.

centralTrack = syncTrack(centralTrack, radarTrack);

xRadar
PRadar

radarTrack.State;
radarTrack.StateCovariance;

H(1,1)
H(2,2)
H(3,3)
H(4,4)
H(5,5)
H(8,6)
H(9,7)

xCentral
PCentral

H*xRadar; % Linear state transformation
H*PRadar*H'; % Linear covariance transformation

PCentral([6 7 10],[6 7 10]) = eye(3); % Unobserved states

% Set state and covariance of central track

centralTrack.State = xCentral;

centralTrack.StateCovariance = PCentral;

end

central2radar

A function to transform a track in the central state-space to a track in the radar state-space.

function radarTrack = central2radar(centralTrack)

% Initialize a track of the correct state size

radarTrack = objectTrack('State',zeros(7,1),...
'StateCovariance',eye(7));

% Sync properties of centralTrack except State and StateCovariance with

% radarTrack See syncTrack defined below.

radarTrack = syncTrack(radarTrack,centralTrack);

xCentral
PCentral

centralTrack.State;
centralTrack.StateCovariance;

H = zeros(7,10); % Central to radar linear transformation matrix

Track-Level Fusion of Radar and Lidar Data

H(1,1) = 1;

H(2,2) = 1;

H(3,3) = 1;

H(4,4) = 1;

H(5,5) = 1;

H(6,8) = 1;

H(7,9) = 1;

xRadar = H*xCentral; % Linear state transformation

PRadar = H*PCentral*H'; % Linear covariance transformation

% Set state and covariance of radar track
radarTrack.State = xRadar;
radarTrack.StateCovariance = PRadar;

end

syncTrack

A function to syncs properties of one track with another except the State and StateCovariance
properties.

function trl = syncTrack(trl,tr2)

props = properties(trl);

notState = ~strcmpi(props, 'State');

notCov = ~strcmpi(props, 'StateCovariance');

props = props(notState & notCov);
for i = 1l:numel(props)

trl. (props{i}) = tr2.(props{i});
end
end

pose

A function to return pose of the ego vehicle as a structure.

function egoPose = pose(egoVehicle)
egoPose.Position = egoVehicle.Position;
egoPose.Velocity = egoVehicle.Velocity;
egoPose.Yaw = egoVehicle.Yaw;
egoPose.Pitch = egoVehicle.Pitch;
egoPose.Roll = egoVehicle.Roll;

end

helperLidarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

function dist = helperLidarDistance(track, truth)

% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.0OriginOffset(:) + [0;0;truth.Height/2];

rot = quaternion([truth.Yaw truth.Pitch truth.Roll], 'eulerd', 'ZYX"', 'frame');
actPos = truth.Position(:) + rotatepoint(rot,rOriginToCenter')";

1-313

1 Lidar Toolbox Featured Examples

1-314

% Actual speed and z-rate
actVel = [norm(truth.Velocity(1:2));truth.Velocity(3)];

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions.
actDim = [truth.Length;truth.Width;truth.Height];

% Actual yaw rate
actYawRate = truth.AngularVelocity(3);

Calculate error in each estimate weighted by the "requirements" of the
system. The distance specified using Mahalanobis distance in each aspect
of the estimate, where covariance is defined by the "requirements". This
helps to avoid skewed distances when tracks under/over report their
uncertainty because of inaccuracies in state/measurement models.

d° o° o° o° o°

% Positional error.

estPos = track.State([1 2 6]);
regPosCov = 0.1*eye(3);

e = estPos - actPos;

dl = sqgrt(e'/reqPosCov*e);

% Velocity error

estVel = track.State([3 71);
regVelCov = 5*eye(2);

e = estVel - actVel;

d2 = sqrt(e'/reqVelCov*e);

% Yaw error

estYaw = track.State(4);
reqYawCov = 5;

e = estYaw - actYaw;

d3 = sqgrt(e'/reqYawCov*e);

% Yaw-rate error

estYawRate = track.State(5);
reqYawRateCov = 1;

e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error

estDim = track.State([8 9 10]);
regDimCov = eye(3);

e = estDim - actDim;

d5 = sqrt(e'/reqDimCov*e);

% Total distance
dist = d1 + d2 + d3 + d4 + d5;

end
helperRadarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

Track-Level Fusion of Radar and Lidar Data

function dist = helperRadarDistance(track, truth)

% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.0OriginOffset(:) + [0;0;truth.Height/2];
rot = quaternion([truth.Yaw truth.Pitch truth.Roll], 'eulerd', 'ZYX"', 'frame');

actPos
actPos

% Actual speed

actVel = norm(truth.Velocity(1l:2));

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions. Only 2-D for radar
actDim = [truth.Length;truth.Width];

% Actual yaw rate

actYawRate = truth.AngularVelocity(3);

d° o° o° o° o°

% Positional error

estPos = track.State([1 2]);
reqPosCov = 0.1*eye(2);

e = estPos - actPos;

dl = sqgrt(e'/reqPosCov*e);

% Speed error

estVel = track.State(3);
regVelCov = 5;

e = estVel - actVel;

d2 = sqgrt(e'/reqVelCov*e);

% Yaw error

estYaw = track.State(4);
reqYawCov = 5;

e = estYaw - actYaw;

d3 = sqgrt(e'/reqYawCov*e);

% Yaw-rate error

estYawRate = track.State(5);
reqYawRateCov = 1;

e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error

estDim = track.State([6 71);
regDimCov = eye(2);

e = estDim - actDim;

d5 = sqrt(e'/reqDimCov*e);

truth.Position(:) + rotatepoint(rot,rOriginToCenter')";
actPos(1:2); % Only 2-D

Calculate error in each estimate weighted by the "requirements" of the
system. The distance specified using Mahalanobis distance in each aspect
of the estimate, where covariance is defined by the "requirements". This
helps to avoid skewed distances when tracks under/over report their
uncertainty because of inaccuracies in state/measurement models.

1-315

1 Lidar Toolbox Featured Examples

% Total distance
dist = d1 + d2 + d3 + d4 + d5;

% A constant penality for not measuring 3-D state
dist = dist + 3;

end

helperRadarLidarFusionFcn

Function to fuse states and state covariances in central track state-space
function [x,P] = helperRadarLidarFusionFcn(xAll,PAl1l)

n = size(xAll,2);
dets = zeros(n,1);

o°

Initialize x and P
xALl(:,1);
PAlL(:,:,1);

o X

onlyLidarStates = false(10,1);
onlyLidarStates([6 7 10]) = true;

% Only fuse this information with lidar
xOnlylLidar xAll(onlyLidarStates,:);
POnlyLidar PAll(onlyLidarStates,onlyLidarStates,:);

% States and covariances for intersection with radar and lidar both
XxToFuse xAll(~onlyLidarStates, :);
PToFuse PAll(~onlyLidarStates,~onlyLidarStates, :);

Sorted order of determinants. This helps to sequentially build the
covariance with comparable determinations. For example, two large
covariances may intersect to a smaller covariance, which is comparable to
the third smallest covariance.

for i = 1:n

dets(i) = det(PToFuse(1l:2,1:2,1));

0° o° o° o°

end

[~,idx] = sort(dets, 'descend');
XxToFuse = xToFuse(:,idx);
PToFuse = PToFuse(:,:,idx);

% Initialize fused estimate
thisX = xToFuse(:,1);
thisP PToFuse(:,:,1);

% Sequential fusion
for i = 2:n

[thisX,thisP] = fusecovintUsingPos(thisX, thisP, xToFuse(:,i), PToFuse(:,:,1));
end

% Assign fused states from all sources
x(~onlyLidarStates) = thisX;
P(~onlyLidarStates,~onlyLidarStates,:) = thisP;

% Fuse some states only with lidar source
valid = any(abs(xOnlyLidar) > le-6,1);

1-316

Track-Level Fusion of Radar and Lidar Data

xMerge
PMerge

x0OnlyLidar(:,valid);
POnlyLidar(:,:,valid);

if sum(valid) > 1

[xL,PL] = fusecovint(xMerge,PMerge);

elseif sum(valid) ==1
XL = xMerge;
PL = PMerge;

else
xL = zeros(3,1);
PL = eye(3);

end

x(onlyLidarStates) = xL;
P(onlyLidarStates,onlyLidarStates) = PL;

end

function [x,P] = fusecovintUsingPos(x1,P1,x2,P2)

d° 0° 0% 0% o° o° o° o° o°

>

Covariance intersection in general is employed by the following
equations:

P~-1 = wl*P17™-1 + w2*P2°-1

X = P¥(wl*P1™-1*x1 + w2*P27-1%*x2);

where wl + w2 =1

Usually a scalar representative of the covariance matrix like "det" or
"trace" of P is minimized to compute w. This is offered by the function
"fusecovint". However. in this case, the w are chosen by minimizing the
determinants of "positional" covariances only.

= size(x1,1);

idx = [1 2];
detPlpos = det(P1l(idx,idx));

detP2pos = det
wl
w2

I

Plinv
P2inv

(
(P2 (idx,idx));
= detP2pos/(detPlpos + detP2pos);
detPlpos/(detPlpos + detP2pos);
= eye(n);

I1/P1;
1/P2;

Pinv = wl*Plinv + w2*P2inv;

P

X

= I/Pinv;

P*(wl*Plinv*x1l + w2*P2inv*x2);

end

References

[1] Lang, Alex H., et al. "PointPillars: Fast encoders for object detection from point clouds."
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

[2] Zhou, Yin, and Oncel Tuzel. "Voxelnet: End-to-end learning for point cloud based 3d object
detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

1-317

1 Lidar Toolbox Featured Examples

[3] Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: Real-time 3d object detection from point
clouds." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018.

1-318

Code Generation For Lidar Object Detection Using PointPillars Deep Learning

Code Generation For Lidar Object Detection Using PointPillars
Deep Learning
This example shows how to generate CUDA® MEX for a PointPillars object detector. For more

information, see “Lidar 3-D Object Detection Using PointPillars Deep Learning” on page 1-189
example from the Lidar Toolbox™.

Third-Party Prerequisites

Required

* CUDA enabled NVIDIA® GPU and compatible driver.
Optional

For non-MEX builds such as static and dynamic libraries or executables, this example has the
following additional requirements.

+ NVIDIA CUDA toolkit.
* NVIDIA cuDNN library.

* Environment variables for the compilers and libraries. For more information, see “Third-Party
Hardware” (GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Verify GPU Environment

To verify that the compilers and libraries for running this example are set up correctly, use the
coder.checkGpuInstall (GPU Coder) function.

envCfg = coder.gpuEnvConfig('host');
envCfg.DeepLibTarget = 'cudnn';
envCfg.DeepCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Pretrained PointPillars Network

Load the pretrained pointPillarsObjectDetector trained in the Lidar 3-D Object Detection
Using PointPillars Deep Learning example. To train the detector yourself, see “Lidar 3-D Object
Detection Using PointPillars Deep Learning” on page 1-189.

matFile = 'pretrainedPointPillarsDetector.mat’;
pretrainedDetector = load('pretrainedPointPillarsDetector.mat', 'detector');
detector = pretrainedDetector.detector;

pointpillarsDetect Entry-Point Function

The pointpillarsDetect entry-point function takes in the point cloud and confidence threshold as
input and passes them to a trained pointPillarsObjectDetector for prediction through the
pointpillarDetect function. The pointpillarsDetect function loads the detector object from
the MAT file into a persistent variable and reuses the persistent object for subsequent prediction
calls.

type('pointpillarsDetect.m")

function [bboxes,scores,labels] = pointpillarsDetect(matFile,datalLoc,datalnt,threshold)
% Predict the output of network and extract the confidence, x, vy,

1-319

1 Lidar Toolbox Featured Examples

o

s width, height, and class.

% load the deep learning network for prediction
persistent pointPillarObj;

if isempty(pointPillarObj)

pointPillarObj = coder.loadDeepLearningNetwork(matFile);
end
ptCloud = pointCloud(datalLoc, 'Intensity',datalnt);

[bboxes,scores,labels] = pointPillarObj.detect(ptCloud, 'Threshold',threshold);
end

Evaluate the detector for Object Detection

Read the point cloud.

pc = pcread('pandasetDrivingData.pcd');

Use the detect method on the pretrained detector.

confidenceThreshold = 0.7;

[bboxes,~,labels] = detect(detector,pc, 'Threshold',confidenceThreshold);
bboxesCar = bboxes(labels == 'Car',:);

bboxesTruck = bboxes(labels == 'Truck',:);

Display the detections on the point cloud.

helperDisplay3DBoxesOverlaidPointCloud(pc.Location, bboxesCar, 'green’', ...
bboxesTruck, 'magenta’', 'Predicted bounding boxes');

1-320

Code Generation For Lidar Object Detection Using PointPillars Deep Learning

Predicted bounding boxes

Generate CUDA MEXscatter

To generate CUDA® code for the pointpillarsDetect entry-point function, create a GPU code
configuration object for a MEX target and set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create a cuDNN deep learning configuration
object and assign it to the DeepLearningConfig property of the GPU code configuration object.

cfg = coder.gpuConfig('mex"');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeeplLearningConfig(TargetLibrary="'cudnn');

dataloc
datalnt

pc.Location;
pc.Intensity;

args = {coder.Constant(matFile) coder.typeof(datalLoc,[Inf,3],[1 O]) coder.typeof(datalnt,[Inf,1]
codegen -config cfg pointpillarsDetect -args args -report

Code generation successful: View report

Run the Generated MEX

Call the generated CUDA MEX with the point cloud. Display the results.

[bboxes,~,labels] = pointpillarsDetect mex(matFile,datalLoc,datalInt,confidenceThreshold);

bboxesCar = bboxes(labels == 'Car',:);
bboxesTruck = bboxes(labels == 'Truck',:);

1-321

Lidar Toolbox Featured Examples

1-322

helperDisplay3DBoxesOverlaidPointCloud(pc.Location, bboxesCar, 'green', ...
bboxesTruck, 'magenta’', 'Predicted bounding boxes');

Predicted bounding boxes

Helper Functions

function helperDisplay3DBoxesOverlaidPointCloud(ptCld, labelsCar,carColor,...
labelsTruck, truckColor,titleForFigure)
% Display the point cloud with different colored bounding boxes for different
% classes
figure;
ax = pcshow(ptCld);
showShape('cuboid',labelsCar, 'Parent',ax, 'Opacity',0.1, 'Color',...
carColor, 'LineWidth',0.5);
hold on;
showShape('cuboid',labelsTruck, 'Parent',ax, 'Opacity',0.1, 'Color', ...
truckColor, 'LineWidth',0.5);
title(titleForFigure);
zoom(ax,1.5);
end

References

[1] Lang, Alex H., Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.
"PointPillars: Fast Encoders for Object Detection From Point Clouds." In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 12689-12697. Long Beach, CA, USA: IEEE,
2019. https://doi.org/10.1109/CVPR.2019.01298.

https://doi.org/10.1109/CVPR.2019.01298

Code Generation For Lidar Object Detection Using PointPillars Deep Learning

[2] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset.

1-323

https://scale.com/open-datasets/pandaset

1 Lidar Toolbox Featured Examples

Aerial Lidar Semantic Segmentation Using PointNet++ Deep
Learning

1-324

This example shows how to train a PointNet++ deep learning network to perform semantic
segmentation on aerial lidar data.

Lidar data acquired from airborne laser scanning systems is used in applications such as topographic
mapping, city modeling, biomass measurement, and disaster management. Extracting meaningful
information from this data requires semantic segmentation, a process where each point in the point
cloud is assigned a unique class label.

In this example, you train a PointNet++ network to perform semantic segmentation by using the
Dayton Annotated Lidar Earth Scan (DALES) dataset [1 on page 1-0]. The dataset contains scenes
of dense, labeled aerial lidar data from urban, suburban, rural, and commercial settings. The dataset
provides semantic segmentation labels for 8 classes such as buildings, cars, trucks, poles, power
lines, fences, ground, and vegetation.

Load DALES Data

The DALES dataset contains 40 scenes of aerial lidar data. Out of the 40 scenes, 29 scenes are used
for training and the remaining 11 scenes are used for testing. Each pixel in the data has a class label.
Follow the instructions on the DALES website to download the dataset to the folder specified by the
dataFolder variable. Create folders to store training and test data.

dataFolder = fullfile(tempdir, 'DALES");
trainDataFolder = fullfile(dataFolder, 'dales las','train');
testDataFolder = fullfile(dataFolder, 'dales las', 'test');

Preview a point cloud from the training data.

lasReader = lasFileReader(fullfile(trainDataFolder, '5080 54435.las'));
[pc,attr] = readPointCloud(lasReader, 'Attributes', 'Classification');
labels = attr.Classification;

% Select only labeled data.
pc = select(pc,labels~=0);
labels = labels(labels~=0);
classNames = [

"ground"

"vegetation"

“cars"

"trucks"

"powerlines"

"fences"

"poles"

"buildings”

I;
figure;
ax = pcshow(pc.Location, labels);
helperLabelColorbar(ax, classNames);
title("Point Cloud with Overlaid Semantic Labels");

https://udayton.edu/engineering/research/centers/vision_lab/research/was_data_analysis_and_processing/dale.php

Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

buildings

poles

Point Cloud with Overlaid Semantic Labels

powerlines

trucks

vegetation

ground

Preprocess Data

Each point cloud in the DALES dataset covers an area of 500-by-500 meters, which is much larger
than the typical area covered by terrestrial lidar point clouds. For efficient memory processing, divide
the point cloud into small, non-overlapping blocks by using a blockedPointCloud object.

Define the block dimensions using the blockSize parameter. As the size of each point cloud in the
dataset varies, set the z-dimension of the block to Inf to avoid block creation along z-axis.

blocksize = [51 51 Inf];

Create amatlab.io.datastore.FileSet object to collect all the point cloud files in the training
data.

fs = matlab.io.datastore.FileSet(trainDataFolder);
Create a blockedPointCloud object using the Fileset object.
bpc = blockedPointCloud(fs,blocksize);

Note: Processing can take some time. The code suspends MATLAB® execution until processing is
complete.

Use the helperCalculateClassWeights helper function, attached to this example as a supporting
file, to calculate the point distribution across all the classes in the training dataset.

numClasses = numel(classNames);
[weights,maxLabel,maxWeight] = helperCalculateClassWeights(fs,numClasses);

1-325

1 Lidar Toolbox Featured Examples

Create Datastore Object for Training

Create a blockedPointCloudDatastore object using the blocked point cloud, bpc to train the
network.

ldsTrain = blockedPointCloudDatastore(bpc);

Specify label IDs from 1 to the number of classes.

labelIDs = 1 : numClasses;

Preview and display the point cloud.

ptcld = preview(ldsTrain);
figure;
pcshow(ptcld.Location);
title("Cropped Point Cloud");

Point Cloud

105 .
100 .
95 .

5.44355

2.44354 5.0805

10°

5.0803 105
o : 5.0802
>-44351 5.0801

5.4435 5.08

For faster training, set a fixed number of points per block.

numPoints = 8192;

Transform the data to make it compatible with the input layer of the network, using the
helperTransformToTrainData function, defined at the end of this example. Follow these steps to
apply transformation.

» Extract the point cloud and the respective labels.

1-326

Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

» Downsample the point cloud, the labels to a specified number, numPoints.
* Normalize the point clouds to the range [0 1].

* Convert the point cloud and the corresponding labels to make them compatible with the input
layer of the network.

ldsTransformed = transform(ldsTrain,@(x,info) helperTransformToTrainData(x,
numPoints, info, labelIDs, classNames), 'IncludeInfo',true);
read(ldsTransformed)

ans=1x2 cell array
{8192x1x3 double} {8192x1 categorical}

Define PointNet++ Model

PointNet++ is a popular neural network used for semantic segmentation of unorganized lidar point
clouds. Semantic segmentation associates each point in a 3-D point cloud with a class label, such as
car, truck, ground, or vegetation. For more information, see “Getting Started with PointNet++" on
page 4-52.

Define the PointNet++ architecture using the pointnetplusLayers function.
lgraph = pointnetplusLayers(numPoints,3,numClasses);

To handle the class-imbalance on the DALES dataset, the weighted cross-entropy loss from the
pixelClassificationlLayer function is used. This will penalize the network more if a point that
belongs to a class with lower weight is misclassified.

% Replace the FocallLoss layer with pixelClassificationLayer.

larray = pixelClassificationLayer('Name', 'SegmentationLayer"', 'ClassWeights",
weights, 'Classes',classNames);

lgraph = replacelLayer(lgraph, 'FocalLoss',larray);

Specify Training Options

Use the Adam optimization algorithm to train the network. Use the trainingOptions (Deep
Learning Toolbox) function to specify the hyperparameters.

learningRate = 0.0005;
12Regularization = 0.01;
numEpochs = 20;
miniBatchSize = 16;

learnRateDropFactor = 0.1;
learnRateDropPeriod = 10;
gradientDecayFactor = 0.9;

squaredGradientDecayFactor = 0.999;

options = trainingOptions('adam',
‘InitialLearnRate',learningRate,
'L2Regularization',12Regularization,
'MaxEpochs',numEpochs,
'MiniBatchSize',miniBatchSize,
'LearnRateSchedule', 'piecewise’, .
'LearnRateDropFactor',learnRateDropFactor,
'LearnRateDropPeriod',learnRateDropPeriod,
'GradientDecayFactor',gradientDecayFactor,
'SquaredGradientDecayFactor',squaredGradientDecayFactor,

1-327

1 Lidar Toolbox Featured Examples

1-328

'Plots', 'training-progress',
'ExecutionEnvironment', 'gpu');

Note: Reduce the miniBatchSize value to control memory usage when training.
Train Model

To train the network, set the doTraining argument to true. Otherwise, load a pretrained network.
To train the network, you can use CPU or GPU. Using a GPU requires Parallel Computing Toolbox™
and a CUDA® enabled NVIDIA® GPU. For more information, see “GPU Support by Release” (Parallel
Computing Toolbox).

doTraining = false;

if doTraining
% Train the network on the ldsTransformed datastore using
% the trainNetwork function.
[net,info] = trainNetwork(ldsTransformed, lgraph,options);

% Load the pretrained network.
load('pointnetplusTrained', 'net');
end

Segment Aerial Point Cloud

To perform segmentation on the test point cloud, first create a blockedPointCloud object, then
create a blockedPointCloudDatastore object.

Apply the similar transformation used on training data, to the test data:

» Extract the point cloud and the respective labels.

* Downsample the point cloud, and the labels to a specified number, numPoints.

* Normalize the point clouds to the range [0 1].

* Convert the point cloud to make it compatible with the input layer of the network.

tbpc = blockedPointCloud(fullfile(testDataFolder, '5080 54470.1las'),blocksize);
tbpcds = blockedPointCloudDatastore(tbpc);

Define numNearestNeighbors and radius to find the nearest points in the downsampled point
cloud for each point in the dense point cloud and to perform interpolation effectively.

numNearestNeighbors = 20;
radius = 0.05;

Initialize the placeholders for the predicted and target labels.

labelsDensePred = [];
labelsDenseTarget = [];

Perform inference on this test point cloud to compute prediction labels. Interpolate the prediction
labels, to obtain prediction labels on the dense point cloud. Iterate the process all over the non-
overlapping blocks and predict the labels using the semanticseg function.

while hasdata(tbpcds)

% Read the block along with block information.
[ptCloudDense,infoDense] = read(tbpcds);

Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

end

% Extract the labels from the block information.
labelsDense = infoDense.PointAttributes.Classification;

% Select only labeled data.
ptCloudDense = select(ptCloudDense{1l}, labelsDense~=0);
labelsDense = labelsDense(labelsDense~=0);

% Use the helperDownsamplePoints function, attached to this example as a
% supporting file, to extract a downsampled point cloud from the
% dense point cloud.
ptCloudSparse = helperDownsamplePoints(ptCloudDense,
labelsDense, numPoints);

% Make the spatial extent of the dense point cloud and the sparse point

% cloud same.

limits = [ptCloudDense.XLimits;ptCloudDense.YLimits;ptCloudDense.ZLimits];

ptCloudSparselLocation = ptCloudSparse.Location;

ptCloudSparselLocation(1:2,:) = limits(:,1:2)"';

ptCloudSparse = pointCloud(ptCloudSparseLocation, 'Color',ptCloudSparse.Color,
"Intensity',ptCloudSparse.Intensity,
"Normal',ptCloudSparse.Normal);

% Use the helperNormalizePointCloud function, attached to this example as
% a supporting file, to normalize the point cloud between 0 and 1.
ptCloudSparseNormalized = helperNormalizePointCloud(ptCloudSparse);
ptCloudDenseNormalized = helperNormalizePointCloud(ptCloudDense);

Use the helperTransformToTestData function, defined at the end of this
example, to convert the point cloud to a cell array and to permute the
dimensions of the point cloud to make it compatible with the input layer

of the network.

ptCloudSparseForPrediction = helperTransformToTestData(ptCloudSparseNormalized);

o® o o o°

% Get the output predictions.
labelsSparsePred = semanticseg(ptCloudSparseForPrediction{1,1},
net, 'OutputType', 'uint8');

% Use the helperInterpolate function, attached to this example as a

% supporting file, to calculate labels for the dense point cloud,

% using the sparse point cloud and labels predicted on the sparse point cloud.

interpolatedLabels = helperInterpolate(ptCloudDenseNormalized,
ptCloudSparseNormalized, labelsSparsePred, numNearestNeighbors,
radius,maxLabel,numClasses);

% Concatenate the predicted and target labels from the blocks.
labelsDensePred = vertcat(labelsDensePred, interpolatedLabels);
labelsDenseTarget = vertcat(labelsDenseTarget, labelsDense);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

For better visualisation, only display a block inferred from the point cloud data.

figure;
ax = pcshow(ptCloudDense.Location,interpolatedLabels);
axis off;

1-329

1 Lidar Toolbox Featured Examples

1-330

helperLabelColorbar(ax,classNames);
title("Point Cloud Overlaid with Detected Semantic Labels");

Point Cloud Overlaid with Detected Semantic Labels buildings

poles

powerlines

trucks

vegetation

ground

Evaluate Network

Evaluate the network performance on the test data. Use the evaluateSemanticSegmentation
function to compute the semantic segmentation metrics from the test set results. The target and
predicted labels are computed previously and are stored in the LlabelsDensePred and the
labelsDenseTarget variables respectively.

confusionMatrix = segmentationConfusionMatrix(double(labelsDensePred),
double(labelsDenseTarget), 'Classes',l:numClasses);
metrics = evaluateSemanticSegmentation({confusionMatrix},classNames, 'Verbose', false);

You can measure the amount of overlap per class using the intersection-over-union (IoU) metric.

The evaluateSemanticSegmentation function returns metrics for the entire data set, for
individual classes, and for each test image. To see the metrics at the data set level, use the
metrics.DataSetMetrics property.

metrics.DataSetMetrics

ans=1x4 table
GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU

0.93104 0.65003 0.52971 0.87937

Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

The data set metrics provide a high-level overview of network performance. To see the impact each
class has on the overall performance, inspect the metrics for each class using the
metrics.ClassMetrics property.

metrics.ClassMetrics

ans=8x2 table

Accuracy ToU
ground 0.98381 0.93339
vegetation 0.86131 0.81124
cars 0.67507 0.38561
trucks 0.012988 0.0094479
powerlines 0.76932 0.70852
fences 0.39146 0.23877
poles 0.57564 0.25588
buildings 0.93064 0.89481

Although the overall network performance is good, the class metrics for some classes like Trucks
indicate that more training data is required for better performance.

Supporting Functions

The helperLabelColorbar function adds a colorbar to the current axis. The colorbar is formatted
to display the class names with the color.

function helperLabelColorbar(ax,classNames)
% Colormap for the original classes.
cmap = [[0 O 255];

[0 255 0];

[255 192 203];

[255 255 01;

[255 0 255];

[255 165 0];

[139 0 150];

[255 0 0]11;
cmap = cmap./255;
cmap = cmap(l:numel(classNames),:);
colormap(ax,cmap);

o°

Add colorbar to current figure.
= colorbar(ax);
.Color = 'w';

[elNg}

o°

Center tick labels and use class names for tick marks.
numClasses = size(classNames,1);

c.Ticks = 1:1:numClasses;

c.TickLabels = classNames;

% Remove tick mark.
c.TickLength = 0;
end

The helperTransformToTrainData function performs these set of transforms on the input data
which are:

1-331

1 Lidar oolbox Featured Examples

» Extract the point cloud and the respective labels.
* Downsample the point cloud, the labels to a specified number, numPoints.
* Normalize the point clouds to the range [0 1].

* Convert the point cloud and the corresponding labels to make them compatible with the input
layer of the network.

function [cellout,dataout] = helperTransformToTrainData(data,numPoints,info, ...
labelIDs, classNames)

if ~iscell(data)
data = {data};

end

numObservations = size(data,l);

cellout = cell(numObservations,?2);

dataout = cell(numObservations,2);

for i = 1:numObservations
classification = info.PointAttributes(i).Classification;

% Use the helperDownsamplePoints function, attached to this example as a
% supporting file, to extract a downsampled point cloud and its labels
% from the dense point cloud.

[ptCloudOut,labelsOut] = helperDownsamplePoints(data{i, 1},
classification,numPoints);

% Make the spatial extent of the dense point cloud and the sparse point
% cloud same.
limits = [ptCloudOut.XLimits;ptCloudOut.YLimits;...
ptCloudOut.ZLimits];
ptCloudSparseLocation = ptCloudOut.Location;
ptCloudSparseLocation(1:2,:) = limits(:,1:2)"';
ptCloudSparseUpdated = pointCloud(ptCloudSparselLocation,
'"Intensity',ptCloudOut.Intensity,
'Color',ptCloudOut.Color,
"Normal',ptCloudOut.Normal);

Use the helperNormalizePointCloud function, attached to this example as
a supporting file, to normalize the point cloud between 0 and 1.
ptCloudOutSparse = helperNormalizePointCloud(

ptCloudSparseUpdated);

[
“©
[

“©

tmp = ptCloudOutSparse.Location;

% Permuted output.
cellout{i,1} = permute(tmp,[1 3 2]);
cellout{i,2} = permute(categorical(labelsOut,labelIDs,classNames),[1l 3 2]);

% General output.
dataout{i,1} = ptCloudOutSparse;
dataout{i,2} = labelsOut;

end

end

The helperTransformToTestData function converts the point cloud to a cell array and permutes
the dimensions of the point cloud to make it compatible with the input layer of the network.

function data = helperTransformToTestData(data)
if ~iscell(data)
data = {data};

1-332

Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

end
numObservations = size(data,l);
for i = 1l:numObservations
tmp = data{i,1}.Location;
data{i,1} = permute(tmp,[1 3 2]);
end
end

References

[1] Varney, Nina, Vijayan K. Asari, and Quinn Graehling. "DALES: A Large-Scale Aerial LiDAR dataset
for Semantic Segmentation." ArXiv:2004.11985 [Cs, Stat], April 14, 2020. https://arxiv.org/abs/
2004.11985.

[2] Qi, Charles R., Li Yi, Hao Su, and Leonidas]J. Guibas. "PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space." ArXiv:1706.02413 [Cs], June 7, 2017. https://arxiv.org/abs/
1706.02413.

1-333

https://arxiv.org/abs/2004.11985
https://arxiv.org/abs/2004.11985
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1706.02413

Lidar Labeling

* “Get Started with the Lidar Labeler” on page 2-2

» “Keyboard Shortcuts and Mouse Actions for Lidar Labeler” on page 2-12
* “Use Custom Point Cloud Source Reader for Labeling” on page 2-15

* “Create Automation Algorithm for Labeling” on page 2-17

* “Temporal Automation Algorithms” on page 2-21

2 Lidar Labeling

Get Started with the Lidar Labeler

The Lidar Labeler app enables you to interactively label ground truth data in a point cloud or a point
cloud sequence and generate corresponding ground truth data.

4\ Lidar Labeler - m} X
LaBEL UDAR ol d Bl SeB@e
[l Bird's Eye View R | -
Colormap [Red to blue ~ O e YEYEY Ego Direction @g} Shrink To Fit Snap to Cluster
Chase View
: Projected View ROl View Camera View Hide Ground Snap to
Colormap Value | Z Height - 1 = X ¥ \ a < s
P <9 - - N Ego View Ground Settings Lo S LR Point
COLORMAP CAMERA VIEW GROUND CUBOID LINE
" ROl Labels | Scene Labels lidarSequence
=)
Label
®> » Road —
= b Car i

s
’
=
-
=
o
o

00.00000 00.00000 34.00000 34.00000 X T I CI I

Start Time Current End Time Max Time

This example demonstrates the capabilities of the Lidar Labeler app in a lidar ground truth data
labeling workflow.

Load Lidar Data to Label

Use the Lidar Labeler app to interactively label point cloud files and sequences of point cloud files.
Open Lidar Labeler App

To open the Lidar Labeler app, at the MATLAB® command prompt, enter this command.

lidarLabeler
The app opens to an empty session.

Alternatively, you can open the app from the Apps tab, under Image Processing and Computer
Vision.

Load Signals from Data Sources
The Lidar Labeler app enables you to load signals from multiple types of data sources. In the app, a

data source is a file or folder containing one or more signals to label. Use this process to load the
data for a point cloud sequence.

2-2

Get Started with the Lidar Labeler

1

On the app toolstrip, click Import > Add Point Cloud. The Select Point Cloud window opens

with the Source Type parameter already set to Point Cloud Sequence.

4\ Select Point Cloud

Source Type: Point Cloud Seguence ~
Point Cloud Sequence
Velodyne Lidar
Custom Point Cloud
Folder Name: LAS/LAZ File Sequence Browse Timestamps: Use Default ~
Rosb:
e Only FCO/PLY files are supported. Default timestamps = (0:numPointClouds-1) sec
OK Cancel

2 In the Folder Name parameter, browse to the folder that contains the sequence of point cloud
data(PCD) files that you want to load and click Select Folder.

3 Ifyou have a variable of timestamps in the MATLAB workspace, set the Timestamps parameter
to From Workspace and, in the Import From Workspace window, select the variable and
click OK. Otherwise, set it to Use Default.

4| Import From Workspace — ot
Fiter: | quration v
Variables:
L)
W
oK Cancel
4

In the Select Point Cloud window, click OK. The point cloud sequence loads into the app.

2-3

2 Lidar Labeling

2-4

Create Labels and Attributes

After loading the point cloud data into the Lidar Labeler app, create label definitions and attributes.
Label definitions contain the information about the labels that you wish to annotate the points with.
You can create label definitions interactively within the app or programmatically by using a
labelDefinitionCreatorLidar object.

Create an ROI Label Definition

An ROI label is a label that corresponds to a region of interest (ROI).

1 On the ROI Labels tab in the left pane, click Label.
2 You can create Cuboid, Line, Voxel label types and provide names for the labels.

4| Define New ROI Label - x
Label Mame Color
Cuboid far
Group
MNone b
Label Description (Optional)
P
W

Ok Cancel

3 From the Group list, select New Group and provide a name for the group. Adding labels to
groups is optional.

4 The specified group name appears on the ROI Labels tab with the specified label name under it.

For more details about these labels, see “ROI Labels and Attributes”.

Create an ROI Attribute

An ROI attribute specifies additional information about an ROI label. You can define ROI attributes of
these types.

* Numeric Value — Specify a numeric scalar attribute, such as the number of doors on a labeled
vehicle.

* String — Specify a string scalar attribute, such as the color of a vehicle.

* Logical — Specify a logical true or false attribute, such as whether a vehicle is in motion.

o Li lftl— Specify a drop-down list attribute of predefined strings, such as make or model of a
vehicle.

Use this process to create an attribute.

Get Started with the Lidar Labeler

On the ROI Labels tab in the left pane, select a label and click Attribute.

Provide a name in the Attribute Name box. Select the attribute type and optionally give the
attribute a description, and click OK. You can hover over the information icon that appears next
to the attribute field to display the added description.

4. Define New RO Attribute for car - *

Afttribute Name
| Lizt W

Lizt temz (Each tem must appear on a new line)

Aftribute Description (Optional)

Ok Cancel

For more details about these attributes, see “ROI Labels and Attributes”.
Create a Scene Label Definition

A scene label defines additional information across a scene. Use scene labels to describe conditions,
such as lighting and weather, or events, such as lane changes.

Use this process to create a scene label definition.

1 Select the Scene Labels tab in the left pane of the app and click Define new scene label.
2 In the Define new scene label window provide a name for the label.
3 Choose a Color for the label.

2-5

2 Lidar Labeling

2-6

|4 Define new scene label — ot

Label Name Color

| |

Group

Neone =

Label Description (Optional)

Ok Cancel

4 From the Group list, select New Group and provide a name for the group. Adding labels to
groups is optional.

5 The Scene Labels pane shows the scene label definition.

Ground Segmentation

The Lidar Labeler app provides ground segmentation feature to hide ground points in the point
cloud. Ground removal makes it easier to find objects during labeling. Use this process to hide
ground points:

1 In the Lidar tab, select Hide Ground to segment and hide the ground points. This also enables
the Ground Settings button.

2 Select Ground Settings to change the ground segmentation algorithm and tune the
corresponding parameters.

|4 Hide Ground — >

Segment ground SMREF

Range-based floodfill
Fit ground plane

g Simple Morphological Filter

Segment ground SMRF o 1
Elevation Threshold O 0.5
Slope Threshold O 0.15
Max Window Radius - 18
Close

3 Select a segmentation algorithm from the drop-down. The app supports these algorithms:

Get Started with the Lidar Labeler

4

* Range-based floodfill (default) — Segment the ground plane in organized point cloud

data using the segmentGroundFromLidarData function.

* Fit ground plane — Segment the ground plane in organized point cloud data using the

pcfitplane function.

* Segment ground SMRF — Segment the ground plane in both organized and unorganized
point clouds using the segmentGroundSMRF function. Use this algorithm for non-uniform
ground planes and aerial lidar data. The default parameters are tuned for aerial data. For
ground lidar data, decrease the Max Window Radius parameter to 5 and the Elevation

Threshold parameter to a value in the range [0.2, 0.3].

After selecting an algorithm, the dialog box displays the corresponding parameters. You can

adjust the parameters using the sliders to improve segmentation results.

Label Point Cloud Using Automation

You can use an automation algorithm to automatically label your data by using one of the included

algorithms or by creating and importing a custom automation algorithm. For more details on creating
a custom automation algorithm, see “Create Automation Algorithm for Labeling” on page 2-17. The
app includes the Lidar Object Tracker and Point Cloud Temporal Interpolator labeling
automation algorithms.

Use this process to label point cloud data using an automation algorithm.

1
2

4

Load the data into the app and create a ROI label definition.

On the LABEL tab of the app toolstrip, in the Automate Labeling section, click Select
Algorithm.

Algorithm: = 6;)

| Select Algaorithm =

Lidar Object Tracker
Track one or more point cloud
7 objects using Unscented Kalman Filter.

Point Cloud Temporal Interpolator
Estimate cubeids in intermediate point cloud frames
using interpeolation between cuboid ROls in key frames.

0P Add Algorithm >

& Refresh list

Select an algorithm for automation.

Click Automate and then follow the automation instructions in the right pane of the app.

View and Adjust the Labels

Once you have created labels for your point cloud data, the app provides options for viewing,
adjusting, and comparing your point cloud and label data.

2-7

2 Lidar Labeling

Projected View

On the LIDAR tab of the app toolstrip, click Projected View to view the selected label in front-view,
top-view, and side-view simultaneously. Use these views to manually adjust the accuracy of your

labels.
4\ Lidar Labeler - m] X
B - Y~ - —oe
=] 3 Bird's Eye Vi .
@5 Shrink To Fit| % Snap to Cluster Colormap |Red to blue - E.).:.D O '@ g e ByE Miew Ego Direction
Chase View
Hide Ground . | |Projected View| ROl View Camera View =
Ground Settings [Auto Align Cluster Settings Colormap Value |Z Height . - B Ego View +X
GROUND CUBOID COLORMAP CAMERA VIEW
ROI Labels Scene Labels visiondata Projected View
SE
Label Attribute
b Object i

. : |-

00.00000 00.00000 01.00000 01.00000 (]}] | [PH] T T T

Start Time Current End Time Max Time

Enable the Auto Align option to fit the cuboid to the label data and align the label in the direction of
the object. This image shows the difference in a label with and without the Auto Align option
enabled.

Label without Auto Align option Label with Auto Align option

Camera View

Use the Camera View option to save and reuse custom views of the point cloud data. You can rotate,
pan, and zoom the view, then save the view by clicking Camera View and selecting Save Camera
View. Specify a name for the view and click OK. You can return to the saved view at any time by
clicking Camera View and selecting the saved view from the drop-down list.

ROI View

You can define and view a region of interest (ROI) in the point cloud using the ROI View, and then
select Select ROI.

The app opens the Adjust ROI Limits dialog box, which contains the ROI parameters.

2-8

Get Started with the Lidar Labeler

To specify x-, y-, and z-axes limits for the ROI, drag the corresponding minimum and maximum value
sliders. Alternatively, you can type new minimum or maximum values in the corresponding text boxes.
You can also adjust the displayed point size of the point cloud using the Point Size parameter. Use
this to improve visualizations of sparse point clouds by increasing their point size. If you want to
return to the full view of the point cloud, click ROI View and select Full View.

Sync Image Viewer

Connect an external tool to the application to display time-synchronized images for use as reference
while labeling. See the lidar.syncImageViewer.SyncImageViewer class. The following example
shows how to connect an external image display to the Lidar Labeler.

Connect Image Display to Lidar Labeler

Connect an image display tool to the Lidar Labeler app. Use the app and tool to display
synchronized lidar and image data.

Specify the name of the lidar data to load into the app.
sourceName = fullfile('lidarSequence');
Connect the video display to the app and display synchronized data.

lidarLabeler(sourceName, 'SyncImageViewerTargetHandle',@helperSyncImageDisplay);

4+] =]
LABEL LIDAR -0 O
@ | Shrink To Fit| = Snap to Cluster Colormap Red to.. * O H sird's Eye View Ego Direction
Hide Ground Projected View ROl View Camera View B chase view
m I Cluster Sett Colormap Value Z Height w " v por=
Ground| Sattings Auto Align Cluster Settings P eig - - B £go View

GROUMD CUBOID COLORMAP. CAMERA VIEV
ROI Labels Scene Labels lidarSequence

ju @QQaa

Label

00.00000 00.00000 34.00000 3400000 ~

Ml (M
Start Time Current End Time Max Time

2-9

2 Lidar Labeling

2-10

.| 34.00000

Export the Labels

On the LABEL tab of the app toolstrip, select Export Labels > To Workspace. In the Export to
workspace window, leave the default export variable name, gTruth, and click OK. The app exports a
groundTruthLidar object, gTruth, to the MATLAB workspace. This object contains the ground
truth lidar label data captured from the app session.

The properties of the groundTruthLidar object, gTruth, contain information about the signal data
source, label definitions, and labels from the associated app session. Display information about the
object and each of its properties using these commands.

L]

gTruth — Display the properties of the groundTruthLidar object.
gTruth.DataSource — Display the information about source of the point cloud data.
gTruth.LabelDefinitions — Display the table of information about label definitions.
gTruth.LabelData — Display the ROI and scene label data.

See Also

Apps
Lidar Labeler

Objects
groundTruthLidar | labelDefinitionCreatorLidar

Get Started with the Lidar Labeler

More About
. “Choose an App to Label Ground Truth Data”
. “Keyboard Shortcuts and Mouse Actions for Lidar Labeler” on page 2-12

2-11

2 Lidar Labeling

Keyboard Shortcuts and Mouse Actions for Lidar Labeler

2-12

Note On Macintosh platforms, use the Command (8) key instead of Ctrl.

Label Definitions

Task

Action

Navigate through ROI labels and their groups in
the ROI Label Definition pane.

Up or Down arrow

Navigate through scene labels and their groups
in the Scene Label Definition pane,

Hold Alt and press the up arrow or down arrow

Reorder labels within a group or move labels Click and drag labels
between groups
Reorder groups Click and drag groups

Frame Navigation and Time Interval Settings

Navigate between frames and change the time range of the signal. These controls are located in the

bottom pane of the app.

Task Action

Go to the next frame Right arrow
Go to the previous frame Left arrow
Go to the last frame + PC: End

» Mac: Hold Fn and press the right arrow

Go to the first frame

* PC: Home
* Mac: Hold Fn and press the left arrow

Navigate through time range boxes and frame
navigation buttons

Tab

Commit time interval settings

Press Enter within the active time interval box
(Start Time, Current, or End Time)

Labeling Window

Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs).

Task Action
Undo labeling action Ctrl+z
Redo labeling action Ctrl+Y
Select all cuboid ROIs Ctrl+A

Select specific cuboid ROIs

Hold Ctrl and click the ROIs you want to select

Cut selected cuboid ROIs

Ctrl+X

Keyboard Shortcuts and Mouse Actions for Lidar Labeler

Task Action
Copy selected cuboid ROIs to clipboard Ctrl+C
Paste copied cuboid ROIs Ctrl+V
Switch between selected cuboid ROI labels. Tab or Shift+Tab
Delete selected Cuboid ROIs Delete

Cuboid Resizing and Moving

Draw cuboids to label lidar point clouds. For examples on how to use these shortcuts to label lidar
point clouds efficiently, see “Label Lidar Point Clouds for Object Detection” (Automated Driving

Toolbox).

Note To enable these shortcuts, you must first click within the point cloud frame to select it.

Task

Action

Resize a cuboid uniformly across all dimensions
before applying it to the point cloud

Hold A and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid along only the x-dimension before
applying it to the point cloud

Hold X and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid along only the y-dimension before
applying it to the point cloud

Hold Y and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid along only the z-dimension before
applying it to the point cloud

Hold Z and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid after applying it to the point
cloud

Click and drag one of the cuboid faces

Move a cuboid

Hold Shift and click and drag one of the cuboid
faces

The cuboid is translated along the dimension of
the selected face.

Move multiple cuboids simultaneously

Follow these steps:

1 Hold Ctrl and click the cuboids that you
want to move.

2 Hold Shift and click and drag a face of one
of the selected cuboids.

The cuboids are translated along the dimension
of the selected face.

2-13

2 Lidar Labeling

2-14

Zooming, Panning, and Rotating

Task

Action

Zoom in on or out of a point cloud frame

In the top-left corner of the display, click the
Zoom In or Zoom Out button. Then, move the
scroll wheel up (zoom in) or down (zoom out).
Alternatively, move the cursor up or right (zoom
in) or down or left (zoom out).

Zooming in and out is supported in all modes
(pan, zoom, and rotate).

Pan across a point cloud frame

Hold Shift and press the up, down, left, or right
arrows

Rotate a point cloud frame

Hold R and click and drag the point cloud frame

Note Only yaw rotation is allowed.

App Sessions

Task

Action

Save current session

Ctrl+S

See Also
Lidar Labeler

More About

. “Get Started with the Lidar Labeler” on page 2-2

Use Custom Point Cloud Source Reader for Labeling

Use Custom Point Cloud Source Reader for Labeling

The Lidar Labeler app enables you to label ground truth data in point clouds. You can use a custom
reader to import the data. First, create a custom reader function. Then, load the custom reader
function and corresponding point cloud data source into the Lidar Labeler.

Create Custom Reader Function

Specify a custom reader as a function handle. The custom reader must have this syntax.
outputPointCloud = readerFcn(sourceName,currentTimestamp)

In this example, readerFcn is the name of the custom reader function.

The custom reader function loads a point cloud from sourceName, which corresponds to the current
timestamp specified by currentTimestamp. For example, suppose you want to load the point cloud
at the third timestamp for a timestamp duration vector that runs from 1 to 5 seconds. To specify
currentTimestamp, at the MATLAB command prompt, enter this code.

timestamps = seconds(1:5);
currldx = 3;
currentTimestamp = timestamps(currldx);

outputPointCloud from the custom reader function must be a pointCloud
object.currentTimestamp is a scalar value that corresponds to the current frame that the function
is executing.

Import Data Source into Lidar Labeler App

To import a custom data source into the app, first create a structure. This structure stores the
function handle and timestamps. Specify the custom reader function handle that reads the data, and
the timestamps.

sourceParams = struct();
sourceParams.FunctionHandle = readerFcn;
sourceParams.Timestamps = timestamps;

To load this structure into the app, at the MATLAB command prompt, enter this code.
lidarLabeler(sourceName,@sourceParams.FunctionHandle, sourceParams.Timestamps);

Alternatively, on the toolstrip of the Lidar Labeler app, select Import > Add Point Cloud. Then, in
the Select Point Cloud dialog box, choose Custom Point Cloud as the Source Type. Specify
Custom Reader Function as the function handle and also specify Source Name. In addition, you
must import corresponding timestamps from the MATLAB workspace.

2-15

2 Lidar Labeling

4. Select Point Cloud

Source Type:

2-16

Custom Point Cloud ~
Custem Reader Function: VTERERTE Impert from Workspace
Source Name:
oK Cancel
See Also
Apps

Lidar Labeler

Classes

lidar.labeler.loading.CustomPointCloudSource |
vision.labeler.loading.MultiSignalSource

More About
. “Get Started with the Lidar Labeler” on page 2-2

Create Automation Algorithm for Labeling

Create Automation Algorithm for Labeling

The Lidar Labeler app enables you to label ground truth for a variety of data sources. You can use an
automation algorithm to automatically label your data by creating and importing a custom
automation algorithm.

Create New Algorithm

The lidar.labeler.AutomationAlgorithm class enables you to define a custom label automation
algorithm for use in the Lidar Labeler app. You can use the class to define the interface used by the
app to run an automation algorithm.

To define and use a custom automation algorithm, you must first define a class for your algorithm and
save it to the appropriate folder.

Create Automation Folder

Create a +lidar/+labeler/ folder within a folder that is on the MATLAB path. For example, if the
folder /local/MyProject is on the MATLAB path, then create the +lidar/+labeler/ folder
hierarchy as follows:

projectFolder = fullfile('local', 'MyProject');
automationFolder = fullfile('+lidar', '+labeler");
mkdir(projectFolder,automationFolder)

The resulting folder is located at /local/MyProject/+lidar/+labeler.
Define Class That Inherits from AutomationAlgorithm Class

At the MATLAB command prompt, enter the command: lidarLabeler to open the Lidar Labeler
app.

Then, load a data source, create at least one label definition, and on the app toolstrip, select Select
Algorithm > Add Algorithm > Create New Algorithm. In the
lidar.labeler.AutomationAlgorithm class template that opens, define your custom automation
algorithm. Follow the instructions in the header and comments in the class.

If the algorithm is time-dependent, that is, has a dependence on the timestamp of execution, your
custom automation algorithm must also inherit from the lidar.labeler.mixin.Temporal class.
For more details on implementing time-dependent, or temporal, algorithms, see “Temporal
Automation Algorithms” on page 2-21.

Save Class File to Automation Folder

To use your custom algorithm from within the labeling app, save the file to the +lidar/+labeler
folder that you created. Make sure that this folder is on the MATLAB search path. To add a folder to
the path, use the addpath function.

Refresh Algorithm List in Labeling App

To start using your custom algorithm, refresh the algorithm list so that the algorithm displays in the
app. On the app toolstrip, select Select Algorithm > Refresh list.

2-17

2 Lidar Labeling

2-18

Import Existing Algorithm

To import an existing custom algorithm into a labeling app, on the app toolstrip, select Select
Algorithm > Add Algorithm > Import Algorithm and then refresh the list.

Custom Algorithm Execution

When you run an automation session in a labeling app, the properties and methods in your
automation algorithm class control the behavior of the app.

Check Label Definitions

When you click Automate, the app checks each label definition in the ROI Labels and Scene Labels
panes by using the checkLabelDefinition method defined in your custom algorithm. Label
definitions that return true are retained for automation. Label definitions that return false are
disabled and not included. Use this method to choose a subset of label definitions that are valid for
your custom algorithm. For example, if your custom algorithm is a semantic segmentation algorithm,
use this method to return false for label definitions that are not of type Voxel.

| | ROILabels '-m_ I_; ROI Labels].__S-:eneleneu

| 5 £ 0 =
Labsad §

| @+ Vehicle | O b &

: @ b Road 1= @ » Road 12
@ b+ Bridge 1 & =) 1 &

| ®» poe i — @) I —
® b Sky 1= b Sky 12
&k Tree & b Tree &

& checkLabellefinition()

Control Settings
After you select the algorithm, click Automate to start an automation session. Then, click Settings,

which enables you to modify custom app settings. To control the Settings options, use the
settingsDialog method.

@ mw
Satiings ﬁ settingsDialog()

Create Automation Algorithm for Labeling

Control Algorithm Execution

When you open an automation algorithm session in the app and then click Run, the app calls the
checkSetup method to check if it is ready for execution. If the method returns false, the app does
not execute the automation algorithm. If the method returns true, the app calls the initialize
method and then the run method on every frame selected for automation. Then, at the end of the
automation run, the app calls the terminate method.

The diagram shows this flow of execution for the labeling apps.

>

xit

e
execute algorithm

initialize

run Each frame

Labels drawn automatically
in frame display

terminate

* Use the checkSetup method to check whether all conditions needed for your custom algorithm
are set up correctly. For example, before running the algorithm, check that the scene contains at
least one ROI label.

* Use the initialize method to initialize the state for your custom algorithm by using the frame.

* Use the run method to implement the core of the algorithm that computes and returns labels for
each frame.

* Use the terminate method to clean up or terminate the state of the automation algorithm after
the algorithm runs.

See Also

Apps
Video Labeler | Image Labeler | Ground Truth Labeler | Lidar Labeler

Functions
lidar.labeler.AutomationAlgorithm | lidar.labeler.mixin.Temporal

2-19

2 Lidar Labeling

Related Examples

. “Automate Ground Truth Labeling For Vehicle Detection Using PointPillars” on page 1-289

. “Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar
Labeler” on page 1-55

See Also

More About

. “Get Started with the Lidar Labeler” on page 2-2
. “Temporal Automation Algorithms” on page 2-21

2-20

Temporal Automation Algorithms

Temporal Automation Algorithms

The Lidar Labeler app enables you to create and import a custom automation algorithm to
automatically label your data. Automation algorithms can be time-independent or time-dependent.

* Time-independent (nontemporal) algorithms can operate independently on each timestamp.

+ Time-dependent (temporal) algorithms have a dependence on the timestamp of execution. For
example, a tracking algorithm, such as the temporal built-in Lidar Object Tracker, uses tracking
from a previous time stamp to track objects in the current time stamp.

Create Temporal Automation Algorithm

To create a temporal automation algorithm to use with Lidar Labeler app, on the app toolstrip,
select Select Algorithm > Add Algorithm > Create New Algorithm. A class template opens,
enabling you to define your algorithm. By default, the class inherits from the
lidar.labeler.AutomationAlgorithmand lidar.labeler.mixin.Temporal classes, as
shown by the class definition of the template:

classdef MyCustomAlgorithm < lidar.labeler.AutomationAlgorithm && lidar.labeler.mixin.Temporal

Time-based algorithms must inherit from both of these classes. Inheriting from the temporal mixin
class enables you to access properties such as StartTime, CurrentTime and EndTime to design
time-based algorithms. For more details on enabling temporal properties, see the
lidar.labeler.mixin.Temporal class reference page. For more details on defining custom
automation algorithms in general, see the lidar.labeler.AutomationAlgorithm class reference

page.

After creating your algorithm, follow the instructions in the class template on where to save the
algorithm.

Run Temporal Automation Algorithm

To run your temporal algorithm from the labeling, first refresh the algorithm list. On the app
toolstrip, select Select Algorithm > Refresh list. Then, reopen the Select Algorithm list, select
your algorithm, and run it on your data as you would any of the built-in automation algorithms.

For temporal algorithms, you can additionally configure the direction of automation. Click Configure
Automation. By default, automation algorithms apply labels from the start of the time interval to the
end. To change the direction and start time of the algorithm, choose one of the options shown in this

table.
Direction of automation Run automation from Example
Direction of automation: Run automation from:

Q Forward © Start time to End time

~ Reverse @ Current time to End time

Run automation from:
™ Start time to End time
O Current time to End time

2-21

2 Lidar Labeling

2-22

Direction of automation

Run automation from

Example

Direction of automation:
© Forward
O Reverse

Run automation from:
© End time to Start time
& Current time to Start time

Run automation from:
™ End time to Start time
O Current time to Start time

—
—

See Also

Apps

Lidar Labeler | Image Labeler | Ground Truth Labeler

Functions

lidar.labeler.AutomationAlgorithm | lidar.labeler.mixin.Temporal

Related Examples

. “Automate Ground Truth Labeling For Vehicle Detection Using PointPillars” on page 1-289
. “Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar

Labeler” on page 1-55
See Also

More About

. “Get Started with the Lidar Labeler” on page 2-2

. “Create Automation Algorithm for Labeling” on page 2-17

Lidar Viewer Tutorial

3 Lidar Viewer Tutorial

Create Custom Preprocessing Workflow with Lidar Viewer

3-2

The Lidar Viewer app is a tool for visualization, analysis, and preprocessing of lidar data. You can
use this app to prepare your lidar data for advanced workflows such as labeling, segmentation, and
calibration. The Lidar Viewer app offers several built-in preprocessing algorithms for use with lidar
data, but it can also help you create custom preprocessing algorithms and integrate them into your
preprocessing workflow.

Using the Lidar Viewer app, you can:

* Create custom preprocessing algorithms and use them interactively within the Lidar Viewer app.

* Combine custom preprocessing algorithms with other built-in and custom algorithms to create
reusable preprocessing workflows.

This example shows how to:

* Read the point cloud data and import it into the Lidar Viewer app.
* Create and use a custom preprocessing algorithm to radially crop the point cloud.

* Combine the custom radial cropping algorithm with a built-in algorithm to convert the
unorganized point cloud to an organized point cloud.

» Export the combined custom preprocessing workflow for reuse.

Read Point Cloud Data

Read the point cloud data into the workspace using the pcread function. This example uses the
Ouster point cloud data.

% Read Ouster Point Cloud Data

fileName fullfile(matlabroot, "examples", "deeplearning shared","data");
fileName fullfile(fileName, "ousterLidarDrivingData.pcd");

ptCloud = pcread(fileName);

To determine whether the point cloud data is organized or unorganized, display the size of the
Location property of the pointCloud object ptCloud. If the point cloud coordinates are in the form,
M-by-N-by-3, the point cloud is an organized point cloud. If the point cloud coordinates are in the
form, M-by-3, the point cloud is an unorganized point cloud.

disp(size(ptCloud.Location))
64 1024 3
For more information about the organized and unorganized point clouds, see “What are Organized

and Unorganized Point Clouds?” on page 4-17

Load Point Cloud Data into Lidar Viewer
Open the Lidar Viewer app from the MATLAB command prompt, by entering this command.
lidarViewer

Alternatively, you can select the app from the Image Processing and Computer Vision section of
the Apps tab.

Create Custom Preprocessing Workflow with Lidar Viewer

On the app toolstrip, select Import > From Workspace. In the Import from Workspace dialog box,
select ptCloud and click OK.

4 Import From Workspace — ot

Select point cloud object(s) in desired order

Available variable(s)object(s) Selected variable(s)/object(s)
ptCloud v ptCloud
Ok Cancel

The app loads the point cloud data and displays it in the Point Cloud Display pane.

Playback Slider

Create Custom Preprocessing Algorithm
Create Custom Algorithm

On the app toolstrip, select Edit Point Cloud to open the Edit tab. You can create custom spatial and
temporal preprocessing algorithms in class-based and function-based formats and import them into

3-3

3 Lidar Viewer Tutorial

3-4

the app. To create a class-based spatial preprocessing algorithm, first click Add Algorithm and
select New > Class Template from the Spatial Algorithms section.

= i

Add Algorithm ~EL BELERE
Spatial Algorithms SRR
=] Mew b % Clazs Template h
&g, From File + | fx Function Template

Temporal Algorithms
oo New C
&g, From File b

Refresh

Refresh List

MATLAB opens a new script containing boilerplate code and instructions for creating a class-based
definition for your custom algorithm. Using this code, you can also define user interface elements for

tuning the algorithm parameters in the Algorithm Parameters pane.

Write Custom Preprocessing Class Definition

Create a +lidar/+lidarViewer package directory within a folder that is already on the MATLAB

path to save the custom preprocessing class definition.

These are the steps to write a custom preprocessing class definition inherited from
lidar.internal.lidarViewer.edits.EditAlgorithm.

1 Define descriptive properties for the algorithm, such as a unique EditName, Icon, and
Description.
2 Define the properties that manage algorithm execution.

(Optional) Define a method that overwrites the initialization method of the superclass.
3 Define methods to capture parameters and set up the user-interface panel.

a Define a method to package parameters in a structure.
b Create the user-interface panel and configure it to capture parameters.
¢ Define a callback function for the user-interface panel.

4 Define the method that processes the point cloud.

For example, to radially crop the point cloud i.e. discard points outside a spherical region of certain

radius, write the custom preprocessing class definition as follows.

% Copyright 2021 The MathWorks, Inc.

Create Custom Preprocessing Workflow with Lidar Viewer

% Name the class as radialCrop by replacing the default value
classdef radialCrop < lidar.internal.lidarViewer.edits.EditAlgorithm

0° 0% 0% 3% 0% 0° A° O° A° A° O° A% A% O° O° O° O° o°

% Step 1: Define the properties that describe the alogorithm. These
% properties include a unique EditName, Icon and Description
% of the edit algorithm. The name of the algorithm and the icon
% will be displayed in the edit algorithm gallery.
properties (Constant)
% Name the algorithm
EditName = 'Radial Crop';
% Set an icon
Icon = fullfile(matlabroot, 'toolbox', 'lidar', ‘'lidar',
'+lidar', '+internal', '+lidarViewer', '+4view',
'+icons', 'customClassEdit 24.png');
% Give a description
Description = "Discard points outside a certain radius";
end

Step 2: Define properties to use in the algorithm.

These properties are user-defined.

properties

% User interface elements defined as properties of the class
elementsUI

[
)
[

)

end

% Optional Step: Define this method to set up the class properties.

methods

a) This is an optional method.
The super class initializes the PointCloud property that
stores the point cloud object present in the current frame
when this edit operation is called. Overwrite this method if
additional steps are required.

0® o o° o° o° o°

% Use this function as an initialization step.
function setUpEditOperation(this, ptCld)
this.PointCloud = ptCld;

\O

% Step 3: Define methods to capture the algorithm parameters and to
% configure the panel.
methods
% a) This function packages the algorithm parameters into a
% structure, params. This structure is passed to the
% applyEdits() function defined below. This function call
% process the input point cloud. The structure must be
% compatible with the one used in applyEdits() function.
function params = getCurrentParams(this)
% Create empty structure
params = struct();

3 Lidar Viewer Tutorial

3-6

end

end

% Add user-defined parameter Radius as struct field
params.Radius = this.elementsUI.Value;
end

b) This function creates the configuration panel with the
UI components required to tune the algorithm.
function setUpAlgorithmConfigurePanel(this, panel)
% Label for numeric edit field
uilabel(panel,Position=[25 150 100 22],Text="Radius");
% Create numeric edit field with callback
this.elementsUI = uieditfield(panel, "numeric",
ValueChangedFcn= ...
@(elementsUI,event) configurationPanelCallback(this));
% Set position of edit field
this.elementsUI.Position = [75 150 100 22];
% Set initial value of parameter
this.elementsUI.Value = 0;
% Set limits for parameter input
this.elementsUI.Limits = [0 inf];
% Set decimal display format of edit field
this.elementsUI.ValueDisplayFormat = "%.2f";
end

[
“°
[

“°

% Define callback function for configuration panel.
% This function is not given in the boilerplate code.
function configurationPanelCallback(this)
% To see the real-time output on changing the parameters
evt = this.createEventData();
notify(this, "PointCloudChanging",evt);
% Get current parameters on event in user-interface
getCurrentParams(this);
end

% Step 4: Define method to process the input point cloud object
% using the parameters passed.
methods (Static)

end

a) This function calls the algorithm to process the point
cloud using the parameters defined in params. Note that
the param structure is created using the getCurrentParams()
function defined above.

function ptCldOut = applyEdits(ptCldIn, params)

% Find points in spherical region
[croppedLocations, ~] = ...
findNeighborsInRadius(ptCldIn, [0 O O],params.Radius);
% Crop point cloud
ptCldOut = select(ptCldIn,croppedLocations);
end

o® o° of o°

Save the algorithm class file to the package directory.

Create Custom Preprocessing Workflow with Lidar Viewer

Import and Use Custom Preprocessing Algorithm

To import the algorithm into Lidar Viewer, on the app toolstrip, select Add Algorithm > From File
> Import Class from the Spatial Algorithms section. Then, in the dialog box, select the algorithm
class file and click Open, adding the custom algorithm to the Spatial Algorithms section of the
toolstrip. If you do not see the custom algorithm on the toolstrip, select Add Algorithm > Refresh
List.

—||oo

[Q [=]es
i
.

SPATIAL ALGORITHMS

F =2 & L

Crop Denoise Downsample Ground
Remaoval

v aa S

Filter Unorganize | Radial Crop

To Organize | D‘

Select your algorithm and tune the parameters in the user-interface.

Algorithm Parameters

Radius | 5cr|

[Default |

[| Apply All Frames

(oK | | cancel |

The Lidar Viewer app dynamically updates the point cloud as you tune the parameters, enabling you
to see the results in real-time.

3 Lidar Viewer Tutorial

Playback Slider

After tuning the parameters, select OK. The History pane records the preprocessing operation.

History

Radial Crop
Radius : 50

To finish editing using this algorithm, select Cancel.

Your preprocessed point cloud is ready for export. However, if you wish to create a custom

preprocessing workflow with multiple preprocessing steps, you can combine multiple preprocessing
algorithms.

3-8

Create Custom Preprocessing Workflow with Lidar Viewer

Combine Multiple Preprocessing Algorithms

The custom radial cropping operation generates an unorganized point cloud. To convert the
unorganized point cloud to an organized point cloud, use the built-in Unorganize to Organize
algorithm. To configure the algorithm for the Ouster sensor used to capture the point cloud data, in
the Algorithm Parameters pane, specify Sensor Name as OS1Genl-64.

— oo

|| e
-
-

SPATIAL ALGORITHM S

F B &8

Crop Denoise Downsample Ground
Remowal
@ B | 5
Filter Unorganize | Radial Crop
| To Organize

Algorithm Parameters

Method
| Convert Using Sensor Mame ¥ |
Sensor Mame | 3S1Geni-64 v |

Horizontal Resolution 10242

Horizontal FOV 4]

Default [

[| Apply All Frames

OK | [Cancel

After tuning the parameters, select OK. The History pane records the preprocessing operation.

3-9

3 Lidar Viewer Tutorial

3-10

History

Radial Crop
Fadius : 50

PCOrganize

Method - Convert Using Sensor Mame
SensorMame | 051Gen1-64
HorizontalResolution © 1024
HorizontalFOV : 360

Discard Operations Export To Function

To finish editing using this algorithm, select Cancel.

Export Custom Preprocessing Workflow to MATLAB Function

Export this combination of preprocessing operations, with their parameters, as a function for future
reuse. In the History pane, select Export To Function. The app creates a function script containing
your custom preprocessing workflow function. Save this function with an appropriate name. The
function accepts a pointCloud object as input and outputs a processed pointCloud object. To
finalize your edits to the point cloud and return to the Lidar Viewer tab, on the app toolstrip, select
Accept.

To use the exported preprocessing function, from the Edit tab of the Lidar Viewer toolstrip, select
Add Algorithm > From File > Import Function in the Spatial Algorithms section, and select the
exported function. You can then apply the imported function to the point cloud directly from the
Algorithm section of the toolstrip.

Create Custom Preprocessing Workflow with Lidar Viewer

ot e

Add Algorithm Crop Denoise

-

Spatial Algorithms SE A

ar e - N

4L From File » | & Import Class

Temporal Algorithms [ké{x Import Function
oA New C
4L From File b
Refresh

Refresh List

Export Point Cloud Data from Lidar Viewer

You can export point clouds as PCD or PLY files. After processing the point cloud, on the app toolstrip,
select Export Point Cloud.

4| Export Point Cloud — *

Select point cloud source(s) to export into PCD/PLY format

Point Cloud Source Select Point Cloud

From Workspace_PointCloud_1 '

Provide path to the destination folder Browse

OK Cancel

In the Export Point Cloud dialog box, select the preprocessed point cloud. Then, in the Provide
path to the destination folder box, specify a destination file path or browse to the destination
folder. To export the point cloud to the specified destination, select OK.

3-11

3 Lidar Viewer Tutorial

See Also

Apps
Lidar Viewer

Functions
pcread

Objects
pointCloud

More About
. “Get Started with Lidar Viewer” on page 4-32

3-12

Concept Pages

* “Introduction to Lidar” on page 4-2

* “Coordinate Systems in Lidar Toolbox” on page 4-7

* “What Is Lidar-Camera Calibration?” on page 4-10

* “Calibration Guidelines” on page 4-14

* “What are Organized and Unorganized Point Clouds?” on page 4-17
* “Parameter Tuning for Ground Segmentation” on page 4-20

* “Get Started with Lidar Camera Calibrator” on page 4-21

* “Get Started with Lidar Viewer” on page 4-32

* “Getting Started with PointPillars” on page 4-49

* “Getting Started with PointNet++" on page 4-52

4 Concept Pages

Introduction to Lidar

4-2

What is Lidar?

Lidar, which stands for Light Detection and Ranging, is a method of 3-D laser scanning.

Lidar sensors provide 3-D structural information about an environment. Advanced driving assistance
systems (ADAS), robots, and unmanned aerial vehicles (UAVs) employ lidar sensors for accurate 3-D
perception, navigation, and mapping.

Lidar is an active remote sensing system that uses laser light to measure the distance of the sensor
from objects in a scene. A lidar sensor emits laser pulses that reflect off of surrounding objects. The
sensor then captures this reflected light and uses the time-of-flight principle to measure its distance
from objects, enabling it to perceive the structure of its surroundings.

Lidar Sensor

d = distance between point and
the sensor

¢ = speed of light

t = time of flight

A lidar sensor stores these reflected laser pulses, or laser returns, as a collection of points. This
collection of points is called a point cloud.

What is a Point Cloud?

A point cloud is a collection of 3-D points in space. Just as an image is the output of a camera, a point
cloud is the output of a lidar sensor.

A lidar sensor captures attributes such as the location in xyz-coordinates, the intensity of the laser
light, and the surface normal at each point of a point cloud. With this information a point cloud
generates a 3-D map of an environment. You can store and process the information from a point cloud
in MATLAB by using a pointCloud object.

Introduction to Lidar

Point clouds can be either unorganized or organized. In an unorganized point cloud, the points are
stored as a single stream of 3-D coordinates. In an organized point cloud, the points are arranged into
rows and columns based on spatial relation between them. For more information about organized and
unorganized point clouds, see “What are Organized and Unorganized Point Clouds?” on page 4-17

Types of Lidar

You can broadly divide the various types of lidar sensors based on whether they are for airborne or
terrestrial application.

Airborne or Aerial Lidar

Airborne lidar sensors are those attached to helicopters, aircrafts, or UAVs. They consist of
topographic and bathymetric sensors.

» Topographic sensors help in monitoring and mapping the topography of a region. Applications
include urban planning, landscape ecology, forest planning and mapping.

* Bathymetric sensors estimate the depth of water bodies. These sensors have an additional green
laser that travels through a water column. Applications include coastline management, and
oceanography.

4-3

4 Concept Pages

) .

Aerial lidar sensor Aerial point cloud data

Terrestrial Lidar

Terrestrial lidar sensors scan the surface of the Earth or the immediate surroundings of the sensor on
land. These sensors can be static or mobile.

» Static sensors collect point clouds from a fixed location. Applications such as mining, archaeology,
smartphones, and architecture use static sensors.

* Mobile sensors are most commonly used in autonomous driving systems, and are mounted on
vehicles. Other applications include robotics, transport planning, and mapping.

4-4

Terrestrial lidar sensor Terrestrial point cloud data

Advantages of Lidar Technology

Lidar sensors are useful when you need to take accurate measurements at longer distances and
higher resolutions than is possible with radar sensors, or in environmental or lighting conditions that
would negatively affect a camera. Lidar scans are also natively 3-D, and do not require additional
software to add depth.

You can use lidar sensors to detect small details, scan dense environments, and collect data at night
or in inclement weather, all with high speed.

Introduction to Lidar

Lidar Processing Overview
1/0 and Supported Hardware

Because the wide variety of lidar sensors available from companies such as Velodyne®, Ouster®,
Hesai®, and Ibeo® use a variety of formats for point cloud data, Lidar Toolbox™ provides tools to
import and export point clouds using various file formats. Lidar Toolbox currently supports reading
data from the PLY, PCAP, PCD, LAS, LAZ, and Ibeo data container (IDC) sensor formats. You can also
write point cloud data to the PLY, PCD, and LAS formats. For more information on file input and
output, see “I/O”. You can also stream live data from Velodyne and Ouster sensors. For more details
on streaming live data, see “Lidar Toolbox Supported Hardware”.

Preprocessing

Lidar Toolbox enables you perform preprocessing operations such as downsampling, denoising, and
cropping on your point cloud data. To learn more about visualizing and preprocessing point clouds,
see “Get Started with Lidar Viewer” on page 4-32.

Labeling, Segmentation and Detection

Labeling objects in a point cloud helps you organize and analyze ground truth data for object
detection and segmentation. To learn more about lidar labeling, see “Get Started with the Lidar
Labeler” on page 2-2.

Many applications for lidar processing rely on deep learning algorithms to segment, detect, track,
and analyze objects of interest in a point cloud. To learn more about point cloud processing using
deep learning, see “Getting Started with Point Clouds Using Deep Learning”.

Calibration and Sensor Fusion

Most modern sensing systems use sensor suites that contain multiple sensors. To obtain meaningful
information from multiple sensors, you must first calibrate these sensors. Calibration is the process of
aligning the coordinate systems of multiple sensors through rotational and translational
transformations. For more information about coordinate systems, see “Coordinate Systems in Lidar
Toolbox” on page 4-7.

Lidar Toolbox provides various tools for calibration and sensor fusion. Many applications involve
capturing the same scene using both a lidar sensor and a camera. To construct an accurate 3-D
scene, you must fuse the data from these sensors by first calibrating them to one another. For more
information on lidar-camera fusion, see “What Is Lidar-Camera Calibration?” on page 4-10 and “Get
Started with Lidar Camera Calibrator” on page 4-21.

Navigation and Mapping

Mapping is the process of building a map of the environment around an autonomous system. You can
use tools in Lidar Toolbox to perform simultaneous localization and mapping (SLAM), which is the
process of calculating the position and orientation of the system, with respect to its surroundings,
while simultaneously mapping its environment. For more information, see “Implement Point Cloud
SLAM in MATLAB".

Applications of Lidar Technology

Lidar Toolbox provides many tools for typical workflows in different applications of lidar processing.

4-5

4 Concept Pages

4-6

Autonomous Driving Assistance Systems — You can detect cars, trucks, and other objects
using the lidar sensors mounted on moving vehicles. You can semantically segment these point
clouds to detect and track objects as they move. To learn more about vehicle detection and
tracking using Lidar Toolbox, see the “Detect, Classify, and Track Vehicles Using Lidar” on page 1-
139 example.

Remote Sensing — Airborne lidar sensors can generate point clouds that provide information
about the vegetation cover in an area. To learn more about remote sensing using Lidar Toolbox,
see the “Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data” on page 1-
86 example.

Navigation and Mapping — You can build a map using the lidar data generated from a vehicle-
mounted lidar sensor. You can use these maps for localization and navigation. To learn more about
map building, see the “Feature-Based Map Building from Lidar Data” on page 1-154 example.

See Also

More About

“What are Organized and Unorganized Point Clouds?” on page 4-17
“Getting Started with Point Clouds Using Deep Learning”
“Coordinate Systems in Lidar Toolbox” on page 4-7

“What Is Lidar-Camera Calibration?” on page 4-10

“Implement Point Cloud SLAM in MATLAB”

Coordinate Systems in Lidar Toolbox

Coordinate Systems in Lidar Toolbox

Lidar Toolbox uses these coordinate systems:

* World — A fixed, universal coordinate system in which the physical sensors exist.
* Sensor — Specific to each particular sensor, such as a lidar sensor or a camera.

* Spatial — Specific to an image captured by a camera. Locations in spatial coordinates are
expressed in pixels.

» Pattern — A checkerboard pattern coordinate system, typically used to calibrate camera sensors.

World Coordinate System

The world coordinate system is a fixed universal system that works as an absolute reference for all
sensors. Lidar Toolbox uses the right-handed Cartesian world coordinate system defined in ISO 8855,
where the positive z-axis points up from the ground. Units are in meters.

Sensor Coordinate System

A sensor coordinate system in Lidar Toolbox is anchored to a specific sensor, such as a lidar sensor or
a camera. The location of each sensor contains the origin of its coordinate system. For example, the
optical center of a camera typically acts as the origin of the camera coordinate system. Points in the
sensor coordinate system follow these axes conventions:

* The x-axis points forward from the sensor.

* The y-axis points to the left, as viewed when facing forward.

* The z-axis points up from the ground to maintain the right-handed coordinate system.

L
X

The yaw, pitch, and roll angles of sensors follow an ISO convention. These angles are clockwise-
positive when looking in the positive direction of the z-, y-, and x-axes, respectively.

4 Concept Pages

Yawl’ Pitch
- - RG..‘"

Spatial Coordinate System

Spatial coordinates enable you to specify a location in an image with greater granularity than pixel
coordinates. In the pixel coordinate system, each pixel is treated as a discrete unit, uniquely
identified by an integer row and column pair, such as (3,4). In the spatial coordinate system, locations
in an image are represented in terms of partial pixels, such as (3.3,4.7).

3.5 oo b
Y ¥ For more information on the spatial coordinate system, see “Spatial
Coordinates”.

Pattern Coordinate System

A common technique for estimating the parameters of a monocular camera sensor is to calibrate the
camera using multiple images of a calibration pattern, such as a checkerboard. In the pattern
coordinate system, (Xp, Yp), the Xp-axis points to the right and the Yp-axis points down. The
checkerboard origin is the bottom-right corner of the top-left square of the checkerboard.

Xp

4-8

Coordinate Systems in Lidar Toolbox

Each checker corner represents one point in the coordinate system. For example, the corner to the
right of the origin is (1,0) and the corner below the origin is (0,1). For more information on

calibrating a camera by using a checkerboard pattern, see “Calibrate a Monocular Camera”
(Automated Driving Toolbox).

See Also

More About

. “Coordinate Systems”
. “Image Coordinate Systems”

4-9

4 Concept Pages

What Is Lidar-Camera Calibration?

Lidar Sensor

Camera

4-10

Lidar-camera calibration establishes correspondences between 3-D lidar points and 2-D camera data
to fuse the lidar and camera outputs together.

Lidar sensors and cameras are widely used together for 3-D scene reconstruction in applications such
as autonomous driving, robotics, and navigation. While a lidar sensor captures the 3-D structural
information of an environment, a camera captures the color, texture, and appearance information.
The lidar sensor and camera each capture data with respect to their own coordinate system.

Lidar-camera calibration consists of converting the data from a lidar sensor and a camera into the
same coordinate system. This enables you to fuse the data from both sensors and accurately identify
objects in a scene. This figure shows the fused data.

Point Cloud

Fused lidar and camera data

Image

Lidar-camera calibration consists of intrinsic calibration and extrinsic calibration.
* Intrinsic calibration — Estimate the internal parameters of the lidar sensor and camera.

* Manufacturers calibrate the intrinsic parameters of their lidar sensors in advance.

* You can use the estimateCameraParameters function to estimate the intrinsic parameters
of the camera, such as focal length, lens distortion, and skew. For more information, see the
“Single Camera Calibration” example.

* You can also interactively estimate camera parameters using the Camera Calibrator app.

» Extrinsic calibration — Estimate the external parameters of the lidar sensor and camera, such as
location, orientation, to establish relative rotation and translation between the sensors.

Extrinsic Calibration of Lidar and Camera

The extrinsic calibration of a lidar sensor and camera estimates a rigid transformation between them
that establishes a geometric relationship between their coordinate systems. This process uses
standard calibration objects, such as planar boards with checkerboard patterns.

What Is Lidar-Camera Calibration?

This diagram shows the extrinsic calibration process for a lidar sensor and camera using a
checkerboard.

The programmatic workflow for extrinsic calibration consists of these steps. Alternatively, you can
use the Lidar Camera Calibrator app to interactively perform lidar-camera calibration.

1 Extract the 3-D information of the checkerboard from both the camera and lidar sensor.
a To extract the 3-D checkerboard corners from the camera data, in world coordinates, use the

estimateCheckerboardCorners3d function.

b To extract the checkerboard plane from the lidar point cloud data, use the
detectRectangularPlanePoints function.

2 Use the checkerboard corners and planes to obtain the rigid transformation matrix, which
consists of the rotation R and translation t. You can estimate the rigid transformation matrix by
using the estimatelLidarCameraTransform function. The function returns the transformation
as a rigid3d object.

Z Z.

~—ll” v.

Lidar sensor Extrinsic

Camera
parameter

You can use the transformation matrix to:

4-11

4 Concept Pages

* Evaluate the accuracy of your calibration by calculating the error. You can do so either
programmatically, using estimatelLidarCameraTransform, or interactively, using the Lidar
Camera Calibrator app.

* Project lidar points onto an image by using the projectLidarPointsOnImage function, as
shown in this figure.

-

o
P A
e

5,
»
=

rr

* Fuse the lidar and camera outputs by using the fuseCameraToLidar function.

» Estimate the 3-D bounding boxes in a point cloud based on the 2-D bounding boxes in the
corresponding image. For more information, see “Detect Vehicles in Lidar Using Image Labels” on
page 1-163.

Bounding boxes in image Detected bounding boxes in point cloud
(Top view)

References

[1] Zhou, Lipu, Zimo Li, and Michael Kaess. “Automatic Extrinsic Calibration of a Camera and a 3D
LiDAR Using Line and Plane Correspondences.” In 2018 IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS), 5562-69. Madrid: IEEE, 2018. https://doi.org/
10.1109/TR0OS.2018.8593660.

4-12

What Is Lidar-Camera Calibration?

See Also
estimateLidarCameraTransform | estimateCheckerboardCorners3d |

detectRectangularPlanePoints | projectLidarPointsOnImage | fuseCameraToLidar |
bboxCameraToLidar

Related Examples
. “Lidar and Camera Calibration” on page 1-119
. “Detect Vehicles in Lidar Using Image Labels” on page 1-163

More About
. “Calibration Guidelines” on page 4-14
. “Coordinate Systems in Lidar Toolbox” on page 4-7

. “Get Started with Lidar Camera Calibrator” on page 4-21

4-13

4 Concept Pages

Calibration Guidelines

These guidelines can help you achieve accurate results for lidar-camera calibration. For more
information on lidar-camera calibration, see “What Is Lidar-Camera Calibration?” on page 4-10

Checkerboard Guidelines
* When using the checkerboard function to create a checkerboard image:

* Create a rectangular checkerboard that contains an even number of squares along one edge
and an odd number of squares along the adjacent edge. This ensures a pattern with two black
corners and two white corners. Patterns in which all corners are the same color can produce
unexpected results for camera extrinsic parameters.

* You can use the length differences of sides and the different corner colors to determine the
orientation and the origin of the checkerboard. The Lidar Camera Calibrator app assigns the
x-direction to the longer side of the checkerboard.

* Print the checkerboard from end-to-end on a foam board, as shown in this figure, to avoid any
measurement errors.

* Accurately measure any padding you add along each side of the checkerboard. Padding values
must be specified as a vector to the Lidar Camera Calibrator app or

4-14

Calibration Guidelines

estimateCheckerboardCorners3d function when you estimate the checkerboard corners. This
figure shows the order of elements of the padding vector, clockwise from the left side of the
checkerboard.

Checkerboard Padding

Guidelines for Capturing Data

Capture data from both sensors simultaneously with no motion blur effects. Motion blur can
degrade the accuracy of the calibration. If you are working with a video recording, carefully
capture the point clouds corresponding to the respective image frames.

The checkerboard should point towards the front axes of the camera (z-axis) and lidar sensor (x-
axis).

Hold the checkerboard target with your arms fully extended, rather than close to your body.
Otherwise, parts of your body may appear to be planar with the target. This can cause inaccurate
checkerboard detection.

For sparse lidar sensors, hold the target from behind, rather than on the edges, because the
detectRectangularPlanePoints function searches for the checkerboard plane in each cluster
of the input point cloud. To further reduce false detections, specify the approximate checkerboard
position using the “ROI” name-value argument.

Be aware of the viewing angle or the field of view of the lidar sensor. Do not place the board in the
blindspots of the sensor.

Pay close attention to the distance between the sensor and the checkerboard. Low resolution lidar
sensors, such as the Velodyne VLP-16, can have trouble accurately detecting distant
checkerboards.

Remove other items from the checkerboard plane to avoid clustering them with the checkerboard
data.

For high-resolution lidar sensors like the HDL-64 and Ouster OS1-64, you can hold the
checkerboard horizontally or vertically while capturing data. However, for best results, tilt the
checkerboard to a 45-degree angle while capturing data.

This figure shows different ways to hold the checkerboard while capturing data. Capture at least
10 frames for accurate calibration.

You must save point cloud data in the PCD or PLY format.

4-15

4 Concept Pages

* Image files can be in any standard image format supported by MATLAB.

For more details on the calibration workflow, see the “Lidar and Camera Calibration” on page 1-119
example.

See Also

Lidar Camera Calibrator | estimateLidarCameraTransform |
estimateCheckerboardCorners3d | detectRectangularPlanePoints |
projectLidarPointsOnImage | fuseCameraToLidar

Related Examples
. “Lidar and Camera Calibration” on page 1-119
. “Detect Vehicles in Lidar Using Image Labels” on page 1-163

More About

. “What Is Lidar-Camera Calibration?” on page 4-10
. “Get Started with Lidar Camera Calibrator” on page 4-21
. “Coordinate Systems in Lidar Toolbox” on page 4-7

4-16

What are Organized and Unorganized Point Clouds?

What are Organized and Unorganized Point Clouds?

Introduction

There are two types of point clouds: organized and unorganized. These describe point cloud data
stored in a structured manner or in an arbitrary fashion, respectively. An organized point cloud
resembles a 2-D matrix, with its data divided into rows and columns. The data is divided according to
the spatial relationships between the points. As a result, the memory layout of an organized point
cloud relates to the spatial layout represented by the xyz-coordinates of its points. In contrast,
unorganized point clouds consist of a single stream of 3-D coordinates, each coordinate representing
a single point. You can also differentiate these point clouds based on the shape of their data.
Organized point clouds are M-by-N-by-3 arrays, with the three channels representing the x-, y-, and z-
coordinates of the points. Unorganized point clouds are M-by-3 matrices, where M is the total
number of points in the point cloud.

Unorganized to Organized Conversion

Most deep learning segmentation networks, such as SqueezeSegv1/v2, RangeNet++, and SalsaNext,
process only organized point clouds. In addition, organized point clouds are used in ground plane
extraction and key point detection methods. This makes organized point cloud conversion an
important preprocessing step for many Lidar Toolbox workflows.

You can convert unorganized point clouds to organized point clouds by using the pcorganize
function. The underlying algorithm uses spherical projection to represent the 3-D point cloud data in
a 2-D (organized) form. It requires certain corresponding lidar sensor parameters, specified using the
lidarParameters object, in order to convert the data.

Lidar Sensor Parameters
The sensor parameters required for conversion differ based on whether the lidar sensor has a

uniform beam or a gradient beam configuration. A lidar sensor is created by stacking laser scanners
vertically. Each laser scanner releases a laser pulse and rotates to capture a 3-D point cloud.

When the laser scanners are stacked with equal spacing, the lidar sensor has a uniform beam (laser
scanner) configuration.

4-17

4 Concept Pages

4-18

To convert unorganized point clouds captured using a lidar sensor with a uniform beam configuration,
you must specify these parameters from the sensor handbook:

* Vertical resolution — Number of channels in the vertical direction, consisting of the number of
lasers. Typical values include 32 and 64.

* Horizontal resolution — Number of channels in the horizontal direction. Typical values include
512 and 1024.

» Vertical field of view — Vertical field of view, in degrees. The sensor in the preceding picture has a
vertical field of view of 45 degrees.

For an example, see “Create a Lidar Parameters Object”.

When the beams at the horizon are tightly packed, and those toward the top and bottom of the sensor
field of view are more spaced out, the lidar sensor has a gradient beam configuration.

To convert unorganized point clouds captured using a lidar sensor with a gradient beam
configuration, you must specify these parameters from the sensor handbook:

* Horizontal resolution — Number of channels in the horizontal direction. Typical values include
512 and 1024.

* Vertical beam angles — Angular position of each vertical channel, in degrees.
For an example, see “Create Lidar Parameters Object for Gradient Lidar Sensor”.

Supported Sensors

The lidarParameters object can automatically load the sensor parameters for some popular lidar
sensors. These sensors are supported:

Sensor Name Input
Velodyne HDL-64E "HDLO4E"
Velodyne HDL-32E "HDL32E'
Velodyne VLP16 'VLP16'
Velodyne VLP32C 'VLP32C'
Velodyne VLP128 'VLS128'
Velodyne Puck LITE '"PuckLITE'
Velodyne Puck Hi-Res "PuckHiRes'

What are Organized and Unorganized Point Clouds?

Sensor Name Input

Ouster 0S0-32 0S0-32
Ouster 0S0-64 0S0-64
Ouster 0S0-128 0S0-128
Ouster OS1Genl1-32 0S1Genl-32
Ouster OS1Genl-64 0S1Genl-64
Ouster OS1Gen1-128 0S1Genl-128
Ouster OS1Gen2-32 0S1Gen2-32
Ouster OS1Gen2-64 0S1Gen2-64
Ouster OS1Gen2-128 0S1Gen2-128
Ouster 0S2-32 0S2-32
Ouster 0S2-64 0S2-64
Ouster 0S2-128 0S2-128
See Also

pcorganize | lidarParameters

Related Examples

. “Unorganized to Organized Conversion of Point Clouds Using Spherical Projection” on page 1-

265

4-19

4 Concept Pages

Parameter Tuning for Ground Segmentation

4-20

The segmentGroundSMRF function segments ground points in a point cloud. The function
parameters need to be tuned in order to get accurate results based on the data. This page will explain
the significance of the function parameters and how it can be tuned for aerial and driving scenario
point clouds. By default, the function is tuned for aerial point cloud data.

The meaning of each parameter and the underlying are explained in the segmentGroundSMRF
documentation. The effect of each parameter on the data is explained in the following list:

See Also

Get Started with Lidar Camera Calibrator

Get Started with Lidar Camera Calibrator

The Lidar Camera Calibrator app enables you to interactively estimate the rigid transformation
between a lidar sensor and a camera.

™ * Compuie letrisss =7 =N * - fin 1 (| oy
b i L= | [i = i % Chuter Themshold | oustola] =) [: o i G -
Mem Ozen G Sewmias Imsart iz=Rited ity s Selpct BEmows Dipsension Tolmnce 00600 a] il Calenbe || Snap T RO Defadt | Expart

Samicn Semicn - = RO Chadoerbosrd Ground Tarskanm Lot -

Arcapiad Oata [18)

e

|ty
i -nlnﬂ
ULl

il .

Aretest Duata (1)

= Deey Thptmited Chathmbad Corvei Tnanies

| I [1p aekef e 1]

Error {dagress)

Emar [picels
= 4 = = @
]

=

el s TR, E 7N L z = e Ml BN T B
Imaga - Poini Cloud Pairs Imags - Foint Cloud Fais

ol ol
Istags - Faint Cloud Fais

1+ Parameiars axgored nworkssacs

This topic shows you the Lidar Camera Calibrator app workflow, as well as features you can use, to
analyze and improve your results. The first, and most important, part of the calibration process is to
obtain accurate and useful data. For guidelines and tips for capturing data, see “Calibration
Guidelines” on page 4-14.

Load Data
To open the Lidar Camera Calibrator app, at the MATLAB command prompt, enter this command.
lidarCameraCalibrator

Alternatively, you can open the app from the Apps tab, under Image Processing and Computer
Vision.

The app opens to an empty session. The app reads point cloud data in the PLY and point cloud data
(PCD) formats, and images in any format supported by imformats. If your data is stored in a roshag
file, see the “Read Lidar and Camera Data from Rosbag File” on page 5-13 tutorial to convert it
accordingly.

Load the calibration data into the app.

4-21

4 Concept Pages

1 On the app toolstrip, select Import > Import Data, opening the Import Data dialog box.

2 In the Folder for images box, enter the path to the folder that contains the image files you want
to load. Alternatively, select the Browse button next to the box, navigate to the folder containing
the images,and click Select Folder.

3 In the Folder for point clouds box, enter the path to the folder that contains the sequence of
PCD or PLY files you want to load. Alternatively, select the Browse button next to the box,
navigate to the folder containing the files,and click Select Folder.

4 In the Checkerboard Settings section, enter the calibration checkerboard parameters. Specify
the size for each checkerboard square in the Square Size box, and select the units of
measurement from the list next to the box.

5 Inthe Padding box, enter the padding values for the checkerboard. For more information on
padding, see “Checkerboard Padding” on page 4-14. Click OK to import your data.

To add more images and point clouds to the session at any point in the session, select Import > Add
Data to Session.

Feature Detection

The app loads the image and point cloud data and performs an automatic feature detection pass on
the data using the specified checkerboard parameters. It detects the checkerboard corners from the
image data and the checkerboard plane from the point cloud data. The app interface displays the
detection progression and results.

4-22

s Features Datected | | Fommt cioud Eaature Datected

The Accepted Data pane displays the image and point cloud pairs that the app accepts for
calibration. The app accepts an image or point cloud if it detects checkerboard features in both of
them. The app uses file names to pair the image and point cloud data. It compares images to the
corresponding point clouds with the same file name. The Rejected Data pane displays the data pairs
for which the app could not detect features in the image, the point cloud, or both. You can use “Select

Get Started with Lidar Camera Calibrator

Region of Interest” on page 4-24 or “Select Checkerboard Region” on page 4-25 on the Rejected
Data to obtain better detections.

The app displays the data in the visualization area as separate panes for image and point cloud data.
Each pane has tabs with the image or point cloud data file name. You can select a data pair from the
Accepted Data or Rejected Data pane to visualize it in this area. When you select a data pair is
selected, the app highlights it in blue. To delete the selected data pair, press Backspace (PC) or
delete (Mac). For more keyboard shortcuts for the data browser, see “Data Browser” on page 4-29.

The image display pane shows the image from the selected pair and the detected checkerboard
corners. To detect the checkerboard corners, the app uses the estimateCheckerboardCorners3d
function. The app computes camera intrinsics to perform feature detection. If you have camera
intrinsic values, you can load them into the app, in the Camera Intrinsics section, by selecting Use
Fixed Intrinsics. In the dialog box that opens, browse to your camera intrinsics file and load it into
the app. After loading, in the Feature Detection section, select Detect to detect features with the
new intrinsics.

4-23

4 Concept Pages

4-24

The point cloud display pane shows the point cloud from the selected pair, with the detected
checkerboard plane rendered in white. To detect the plane, the app uses the
detectRectangularPlanePoints function.

Use the various display options for point clouds in the app to improve visualization and detection.
Select Region of Interest

Select Snap To ROI to visualize a particular region of interest (ROI) in the point cloud. The app sets
a default value for the ROI, but you can set a custom ROI using the Edit ROI tool. This tool enables
you to manually pinpoint the region of the point cloud. Specifying an ROI to the region where the
checkerboard is present can reduce data rejections and improve performance by focusing feature
detection on a specific region.

Get Started with Lidar Camera Calibrator

N,
ZrapTo R | Apply Carcel

Salectns FICH famin, yimin, Zmin, weth. hespte. dect] : [0-5-2 10 15.4]

1 Select Edit ROI, which opens the Edit ROI tab. The tab contains the same Accepted Data and
Rejected Data panes as the Calibration tab, but the point cloud display pane takes up the rest
of the window.

2 Select a data pair, which the app highlights in blue. You can select a rejected data pair to tune
the ROI.

3 Clear the Snap To ROI button to view the whole point cloud.
The ROI is highlighted in yellow. Point to the ROI, and the cursor turns into a hand symbol.

Click on any side of the ROI and drag it to toggle the size. You can select Snap To ROI to view
the contents of the ROI and change the size accordingly.

6 Select Apply to save your changes or Cancel to discard them.

Because the app applies the new ROI on all the point cloud frames, you must define an ROI that
covers all areas in which you placed the checkerboard. Clear the Snap To ROI button to view the
whole point cloud and select the Hide ROI Cuboid to remove the ROI highlighting. Select Detect to
detect features in the selected ROI. Alternatively, you can use keyboard shortcuts to perform these
tasks. For more information, see “Edit ROI” on page 4-30.

Select Checkerboard Region

To further tune the detections, you can use the Select Checkerboard feature to manually select
checkerboard points in any point cloud frame.

4-25

4 Concept Pages

SELECT CHICEEREDWRD:

B B ¢ =5

Sdeit Tear Apply Carcal
Cheetsebird . Sebection

Srdecied par [image Features Delecled | | Poinl clood Feafies Kok Detected |

1 On the app toolstrip, select Select Checkerboard. The app opens the Select Checkerboard
tab. This tab contains the same Accepted Data and Rejected Data panes as the Calibration
tab, but the point cloud display pane takes up the rest of the window.

2 Select a data pair. The app highlights it in blue. You can select a rejected data pair and find the
checkerboard in the point cloud.

3 Use the zoom and rotate options in the axes toolbar of the point cloud display to locate the
checkerboard.

4 Select Select Checkerboard. The cursor changes into a crosshair.

Click and drag the cursor over the checkerboard. A selection rectangle appears, with the points
inside it highlighted in red. Alternatively, you can also select Brush/Select Data on the axes
toolbar.

6 After selecting the points, rotate the point cloud to check whether any background points have
been selected. If your selection contains unwanted points, select Clear Selection to start over.

7 Select Apply to save the selected points, or Cancel to discard them.

This checkerboard selection applies only to the current point cloud. Select Detect to detect features
using the manually selected checkerboard.

Feature Detection Settings

The app provides these feature detection settings in which you can tune parameters.

4-26

Get Started with Lidar Camera Calibrator

% Cluster Threshold C.SDC%

Remove Dimension Tolerance D.DSDC%
Ground

FEATURE DETECTION

* Remove Ground — Remove ground points from the point cloud. The app uses the pcfitplane
function to estimate the ground plane. The Remove Ground feature is enabled by default. Select
Remove Ground to clear it.

* Cluster Threshold — Clustering threshold for two adjacent points in the point cloud, specified in
meters. The clustering process is based on the Euclidean distance between adjacent points. If the
distance between two adjacent points is less than the clustering threshold, both points belong to
the same cluster. Low-resolution lidar sensors require a higher Cluster Threshold, while high-
resolution lidar sensors benefit from a lower Cluster Threshold.

* Dimension Tolerance — Tolerance for uncertainty in the rectangular plane dimensions, specified
in the range [0,1]. A higher Dimension Tolerance indicates a more tolerant range for the
rectangular plane dimensions.

Select Detect to detect features using the new parameters.

Calibration

When you are satisfied with the detection results, select Calibrate button to calibrate the sensors. If
you have an estimated transformation matrix, select Initial Transform to load the transformation
matrix from a file or the workspace. The app assumes the rotation angle between the lidar sensor and
the camera is in the range [-45 45], in degrees, along each axis. For a rotation angle outside this
range, use Initial Transform to specify an initial transformation to improve calibration accuracy.

After calibration, the app interface displays the image with the checkerboard points from the point
cloud projected onto it. The app uses the projectLidarPointsOnImage function to project the
lidar points onto the image. The color information of the images is fused with the point cloud data
using the fuseCameraTolLidar function.

—0-- Detected Checkerboard Corner Features

-~ Projected Lidar Points

The app also provides the inaccuracy metrics for the transformation matrix using error plots. The
plots specify these errors in each data pair:

4-27

4 Concept Pages

» Translation Errors — The difference between the centroid coordinates of the checkerboard
planes in the point clouds and those in the corresponding images. The app returns the error
values in meters.

* Rotation Errors — The difference between the normal angles defined by the checkerboard
planes in the point clouds and those in the corresponding images. The app estimates the plane in
the image using the checkerboard corner coordinates. The app returns the error values in
degrees.

* Reprojection Error— The difference between the projected (transformed) centroid coordinates
of the checkerboard planes from the point clouds and those in the corresponding images. The app
returns the error values in pixels.

Error Plots

Translation Errors Rotation Errors Reprojection Errors

- AT] | -
0.08F E 1of p

— 0.05F
o

w
T

< 0.04f
E
o003t
g
w002t

Error (-degrees)
M
Error (pixels)

0.01F g 2r

0

=

1 2 3 4 5] 7T 8 g 10 1 2 3 4 5] 7 8 9 10 1 2 3 4 5 g 7 8 9 10
Image - Point Cloud Pairs Image - Point Cloud Pairs Image - Point Cloud Pairs

When you select a data pair in the data browser, the corresponding bars in the error plot are
highlighted in dark blue. You can tune the calibration results by removing outliers. Drag the red line
on each plot vertically to set error limits. The app selects all the data pairs with an error value
greater than error limit as outliers, and highlights the error bars and their corresponding data pairs
in the data browser in blue. Right-click any of the selected data pairs on the data browser and select
Remove and Recalibrate to delete the outliers and recalibrate the sensors. Deleting outliers can
improve calibration accuracy. For a list of keyboard shortcuts to use with the error plots, see “Error
Plots” on page 4-29.

Export Results

¢

L=l
Export

-

Export Parameters to Workspace
Export Parameters to File

Generate MATLAB Script

You can export the transformation matrix and error metrics, as variables, into the workspace or a
MAT-file. You can generate a MATLAB script of the complete app workflow to use in your projects.

Keyboard Shortcuts and Mouse Actions

Note On Macintosh platforms, use the Command (3) key instead of Ctrl.

4-28

Get Started with Lidar Camera Calibrator

Use keyboard shortcuts and mouse actions to increase productivity while using the Lidar Camera

Calibrator app.

Data Browser

Task

Action

Navigate through data pairs in the Accepted
Data or Rejected Data pane

Up or down arrow

Select all data pairs in the data browser

Ctrl+A

Select multiple data pairs above or below the
currently selected data pair.

Hold Shift and press the up arrow or down arrow

Select multiple data pairs.

Note Deselecting a selected data pair is not
currently supported using the same shortcut.

Hold Ctrl and click on data pairs

Delete the selected data pair from the data
browser.

* PC: Backspace or Delete
* Mac: delete

A dialog box appears to deletion.

Select the data pairN above the currently
selected data pair. N is the number of data pairs
fully displayed in the data browser at the current
time.

* PC: Page Up
* Mac: Hold Fn and press the up arrow

Select the data pairN below the currently
selected data pair. N is the number of data pairs
fully displayed in the data browser at the current
time.

* PC: Page Down
* Mac: Hold Fn and press the down arrow

Select the first data pair in the data browser.

* PC: Home
* Mac: Hold Fn and press the left arrow

Select the last data pair in the data browser.

 PC: End

* Mac: Hold Fn and press the right arrow

Error Plots

Use these shortcuts on the error plots to analyze the data. Operations on any of the three error plots
affect the corresponding error bars on all three plots.

Task Action
Select the error bar left of the currently selected |Left arrow
error bar.

Select the error bar right of the currently Right arrow

selected error bar.

Select the error bar right or left of the currently
selected error bar, in addition to the currently
selected error bar.

Hold Shift and press the left arrow or right
arrow

4-29

4 Concept Pages

4-30

Task

Action

Select multiple error bars.

Note Deselecting a selected error bar is not
currently supported using the same shortcut.

Hold Ctrl and click error bars

Select all error bars.

Ctrl+A

Delete the selected error bar and corresponding
data pair from the data browser. The app then
recalibrates the sensors.

* PC: Backspace or Delete
* Mac: delete

A dialog box appears to confirm deletion.

Edit ROI

Shortcuts to use on the Edit ROI tab.

Task Action
Undo ROI size change. Ctrl+z
Note The app stores only the last three sizes of

the ROI, so you cannot undo more than three

times in a row.

Redo ROI size change. Ctrl+Y
Clear ROI selection Esc

Limitations

The Lidar Camera Calibrator app has these limitations:

* The script generated from Export > Generate MATLAB Script does not include any

checkerboard regions manually selected using the Select Checkerboard feature. In the script,

the checkerboard region is detected in the specified ROI.

» After manually selecting checkerboard regions using the Select Checkerboard feature, when you
return to the Calibration tab, you can see the selected points (highlighted in red) only while

viewing the whole point cloud (when SnapToROI is cleared).

See Also

Lidar Camera Calibrator | estimateCheckerboardCorners3d |

estimateLidarCameraTransform|projectLidarPointsOnImage | fuseCameraTolLidar |

bboxCameraToLidar

Related Examples

. “Lidar and Camera Calibration” on page 1-119

. “Read Lidar and Camera Data from Rosbag File” on page 5-13

. “Detect Vehicles in Lidar Using Image Labels” on page 1-163

Get Started with Lidar Camera Calibrator

More About

. “What Is Lidar-Camera Calibration?” on page 4-10
. “Calibration Guidelines” on page 4-14

4-31

4 Concept Pages

Get Started with Lidar Viewer

Use the Lidar Viewer app to view, analyze, and perform preprocessing operations on lidar data. Use
the app to prepare data for advanced workflows like labeling, segmentation, and calibration.

MEASUREMENT

1 - S P ST
i rE Colormap Red to Blue ~ & XY View E Bird's Eye View P oy o a =
i N . e B J Ego Direction m Q:)) &v Hide Ground 54 View Clusters ? L
B Colormap Value ZHeight ~ Background | @8 YZ View Chase View xS E =
New Import Zebiogiil ,; = - Custom Restore Edit Default
Session - Point Size | 6= S & XZ View il Ego View Views = Default View Point Cloud | Layout | P
Data Browser LASILAZ File_aerialLidarData

LASNLAZ File_aerialLidarData
LAS/LAZ File_aerialLidarData2

Point Cloud Information

[source Name LASILAZ File_aerial

[Type LASILAZ File

[Points Count [1018047

[x-timits (429745 4301451 | | pyavback Siider
[v-Limits 13679831, 3680114

[Z-Limits (73,728

| Current Frame Index |1 -

This topic provides an overview of the app workflow and underlying features. To open the app, at the
MATLAB command prompt, enter this command.

lidarViewer

Alternatively, you can open the app from the Apps tab, under Image Processing and Computer
Vision.

Load Data

The Lidar Viewer app can import pointCloud objects from the workspace and read point cloud
data from PLY, PCAP, LAS, LAZ, PCD, and rosbag files. You can load lidar data from multiple sources
at once. Use this process to load data into the app:

* On the app toolstrip, select Import > From File. Choose a data source from the list.
* In the Import dialog box that appears, specify the location of the point cloud data from the
selected data source.

* Point Cloud Sequence — In the Provide path to a folder containing PCD/PLY file(s) box,
specify the path to the folder containing your point cloud data. Alternatively, select Browse,
browse to the folder containing your data, and then select Select Folder.

* Velodyne Lidar — For Velodyne lidar data, select the device model name from the Device
Model list. In the Provide path to a calibration file box, specify the path to the calibration
file of the sensor.

4-32

Get Started with Lidar Viewer

4| Import Velodyne Lidar — >

Provide path to a PCAP file

Browse
Device Model: | VLP16 L
Provide path to a calibration file
Y- \jobarchive'Blidar2021_05_07_h00m31551_job1669079_passimatlabiic Browse

OK | | Cancel |

LAS/LAZ File— In the Provide path to a LAS/LAZ file box, specify the path to the folder
containing your point cloud data. Alternatively, select Browse, browse to the folder containing
your data, and then select Select Folder.

Rosbag — For rosbag files, select the topics that contain point cloud data from the Point
Cloud Topics list. To load data from a rosbag file, you must have a ROS Toolbox license.

4| Import Rosbag — >

Provide path to a ROSBAG file

Browse

Mote: This feature requires ROS Toolbox. The supporied message types for this
source are: 1. sensor_msgs/PointCloud?2

Point Cloud Topics: - |

| Ok | | Cancel

Custom Point Cloud — To load point cloud data from a custom source, create a custom
reader function and add it to your MATLAB path. In the Custom Reader Function box specify
the path to the reader function, and in the Source Name bhox specify the path to the data
folder.

4-33

4 Concept Pages

4| Impert Custom Point Cloud — >

Custom Reader Function:

Source Name:

QK | | Cancel

» Alternatively, select Import > From Workspace on the app toolstrip. In the Import From
Workspace dialog box that appears, select the variables/ objects from the workspace you want to

import.
4 |Import From Workspace e X

Select point cloud object(s) in desired order

AvaiFahle variable{s)#object{s} Selected variable(s)object(s)

ptCld1 7 | | ptcid1

| ptCld2 7~ ptCidz

| ptCid3

oK Cancel

The app loads and plots point cloud data in the Point Cloud Display pane.

Data Visualization

The Lidar Viewer app organizes loaded data, based on the order you import it, as a list in the Data
Browser pane. To delete the imported data, right click on the data you want to delete and select
Delete Data.

4-34

Get Started with Lidar Viewer

Data Browser

|LASILAZ File_aeriallidarData |
Point Cloud Sequence_lidardata
Point Cloud Sequence_pointCloud

Select the data that you want to visualize. The metadata of the point cloud populates in the Point
Cloud Information pane. The information and fields change based on the data source and available
metadata.

Point Cloud Information

Source Name LASILAZ File_aeriall
Type LASILAZ File

Foints Count 1018047

X-Limits [429745 430145]
Y-Limits [3679831, 3680114
Z-Limits [73,126]

Current Frame Index |1

Mumber OFf Frames 1

4

The visualization pane displays the point cloud data along with playback controls in the Playback
Slider.

4-35

4 Concept Pages

Painl Cloud Sequencea_paintCloud

Playback Slider

] || [H]

The Playback Slider pane contains a slider that indicates your current position in the point cloud
sequence, as well as buttons to control the playback of the point cloud data. The buttons, from left to
right, are:

* First Frame

* Previous Frame

* Play

* Next Frame

* Last Frame

If you select Play, the Play button becomes the Pause button, and all the playback controls except
Pause are disabled.

For point cloud data with timestamp information such as PCAP, rosbag files, the app displays start
time, current time, and end time on the Playback Slider pane.

Flayback Shider

00 : 00.0000

Start Tme Current Time: End Time

4-36

Get Started with Lidar Viewer

Color Controls

Lidar Viewer provides various visualization features to analyze point cloud data. The app uses color
to visualize more details about the displayed point cloud.

Colormap Red to Blue - B
Colormap Value Z Height = Background
Point Size s Cor
COLOR

You can control the color of the displayed point cloud by using these options in the Color section of
the app toolstrip:

Colormap
Choose the color profile for the point cloud data, from these options.

lenrmapl Red to Blue =

Colormap Value| Red to Blue
Point Size| paruls
I
PointCloud_1 Spring
Hot
Color

The app enables the Color option only when the input point cloud data has color information.
Colormap Value

Choose how the color profile applies to the point cloud, from these options:

Colormap Red to Blue -
Colormap Value 'Z.Htrght = | Bac
Paoint Size Z Height
{ Radial Distance
. | Intens
FointCloud_1 i
slLidarData Classification
LazerReturn

Scanfngle

GP3TimeStamp

* Z Height — The color changes as the distance between points increases.

* Radial Distance — The color changes as the distance between points and the ego vehicle
increases.

* Intensity — The color changes as the intensity value of points increases.

4-37

4 Concept Pages

* C(Classification — The color changes based on the classification value of the point. For more
information, see “Classification”.

* LaserReturn — The color changes as the number of laser returns increases. The return number
is the number of times a laser pulse reflects back to the sensor.

* ScanAngle — The color changes as the sensor scan angle increases. The scan angle is a value in
degrees between -90 and 90. At 0 degrees, the laser pulse is directly below the aerial lidar sensor.
At -90 degrees, the laser pulse is to the left side of the sensor, relative to the direction of flight. At
90 degrees, the laser pulse is to the right side of the sensor, relative to the direction of flight.

* GPSTimeStamp - The color changes as the timestamp of a point increases.

Note The app enables all the above options for Colormap Value with LAS/ LAZ data only. The
default options for any other data format include Z Height, Radial Distance, Intensity.

Point Size
Adjust the display size of points.
Background Color

Select the background color for the point cloud display.

4-38

Get Started with Lidar Viewer

Camera View Options

XY View E Bird's Eye View @ 55 -
Ego Direction _ é) @- Hide Ground [Z[f View Clusters

& YZView B Chase View -
Custom Restore

@ X View @R Ego View Views = Default View

Al I7E

viaUALILLT

The app provides various predefined camera angles for viewing the point cloud data, as well as the
option to create custom views:

XY View

View the xy-axes of a point cloud. This is the top view of the scene, line of sight is along z axis.

YZ View

View the yz-axes of a point cloud. This is the front view of the scene, line of sight is along x axis.

4-39

4 Concept Pages

Lo by B e

XZ View

View the xz-axes of a point cloud. This is the side view of the scene, line of sight is along y axis.

Bird's Eye View

View from a high angle above a point cloud.

Chase View

View the point cloud from a fixed distance behind the ego vehicle (actor).

Ego View

View a point cloud from the perspective of the ego vehicle.

4-40

Get Started with Lidar Viewer

Ego Direction

Use the Ego Direction list to select the direction the camera faces for Ego View and Chase View.

Custom Views

@ D
Custom Restore
Views v | Default View FPoi

1 @ Save Camera View

{F Organize Camera Views
Saved camera view names
.;_ﬁ‘ achviewl

.{_ﬁf‘ adview?

Select Custom Views to save and reuse custom views of the point cloud data. You can interactively
rotate, pan, and zoom the camera to create a view, then save the view by clicking Custom Views and
selecting Save Camera View. Specify a name for the view and select OK. You can return to the
saved view at any time by clicking Custom Views and selecting the saved view from the list. Select
Organize Camera Views from the list to delete or rename the saved views.

Restore Default View

Restore the point cloud display to the default view.

4-41

4 Concept Pages

Hide Ground
4 Hide Ground — o
| Range-based floodfil v | [] View Ground Data

Hide ground in organized point cloud using
segmentGroundFromLidarData

Elevation Angle Delta

Initial Elevation Angle I

| Close |

Select Hide Ground to remove ground points from the point cloud. This enables the Ground
Settings option. Click Ground Settings to open a dialog box in which you can select from these
ground removal algorithms and specify their parameters.

* Select Range-based floodfill to remove ground points using the
segmentGroundFromLidarData function.

* Select Fit ground plane to fit and filter the ground plane using the pcfitplane function.

* Select Segment ground SMRF to filter the ground points using the segmentGroundSMRF
function. The app enables this option for only organized point clouds.

To visualize the segmented ground and nonground planes on the point cloud, select View Ground
Data.

View Clusters

4| Cluster Settings — >

| Range-based clustering v |

Cluster organized point cloud based on range data using
segmentLidarData

Distance Threshold C
Angle Threshold

| Close |

Select View Cluster to view point cloud clusters. This enables the Cluster Settings option. Click
Cluster Settings to open a dialog box in which you can select from these cluster-based coloring
algorithms.

4-42

Get Started with Lidar Viewer

* Select Range-based clustering to cluster point cloud data using the segmentLidarData
function.

* Select Distance-based clustering to cluster point cloud data using the pcsegdist function.
» Select k-means clustering to perform k-means clustering on the points.

You can specify the algorithm parameters in the dialog box, and visualize the output point cloud
clusters.

Edit Point Cloud

Apply preprocessing operations to a point cloud by selecting on the Edit Point Cloud from the app

toolstrip. The app opens the Edit tab. This tab retains the color and visualization features present in
the Lidar Viewer tab . You can select built-in preprocessing operations from the Algorithm section
of the toolstrip:

i 2 o & X

Add Algorithm Dencise Downsample Filter Crop Cancel

-

ALGORITHM FINALIZE
Denoising
Remove noise from a 3-D point cloud using the pcdenoise function.
Downsampling
Downsample a 3-D point cloud using the pcdownsample function.
Filtering
Median filter 3-D point cloud data using the pcmedian function.
Cropping

Crop a 3-D point cloud using cuboids. You can interactively adjust the cuboid limits, or specify them
using the Cuboid Limits option. Select a Crop Method to specify whether to crop inside or outside
the cuboid. Then, click OK. You can add multiple cuboids using the Add Cuboid option, and visualize
the cropped point cloud.

4-43

4 Concept Pages

4-44

Algorithm Parameters

() Original Limits () Current Limits

Axis Min Max

X-Limits 4 2075e+05 4 3015e+05
Y-Limits 3.6798e+06 3.6801e+06
Z-Limits T2.7900 1258200

Crop Method | Inside v |

Crop data insidefoutside the cuboid

Add Cubaoid

Cuboid Limits

Xlimits | 4297e+[= | 43018+
VoLimits | 3-68e+0= |3.68e+0|—]
ztimits | 727915 | 1258/

Ground Removal

Segment the ground plane from 3-D point cloud data. You can select from these algorithms:

* Fit Ground Plane — Fit and filter ground plane using the pcfitplane function.
* Hide Ground — Hide ground using the segmentGroundFromLidarData function.
* Segment Ground — Segment ground using the segmentGroundSMRF function.

Organizing

Convert the 3-D point cloud into an organized point cloud using the pcorganize function. For more
information, see “What are Organized and Unorganized Point Clouds?” on page 4-17

After selecting an algorithm, the app populates the Algorithm Parameters pane with the
corresponding tunable parameters.

Get Started with Lidar Viewer

Algorithm Parameters

Dimensions
w'| F-axis
w'| -axis

| £-axis

Radius 0.05

|
0.001 10

Default
Apply All Frames

Ok Cancel

Algorithm Parameters

The Lidar Viewer app dynamically updates the point cloud as you tune the parameters, enabling you
to see the results in realtime. Select Apply All Frames to apply the algorithm to all the frames in the
data source. After tuning your parameters select OK. The History pane records all preprocessing
operations applied to the current frame. You can apply the same algorithm multiple times on the data
using OK. Select Cancel to exit the edit algorithm.

PCGroundRemoval
Method - Segment Ground
MaxWindowRadius : 18
ElevationThreshold : 0.5
SlopeThreshold - 0.15
ElevationScale : 1.25

PCDenoize
MumMeighbors : 4
Threshold : 1
Discard Export To
Operations Function

4-45

4 Concept Pages

You can discard all applied algorithms by selecting Discard Operations. You can also export the
selected preprocessing steps and the parameters, as a function by selecting Export To Function.
The app creates a MAT file containing your custom preprocessing function. The function accepts a
pointCloud object as input and outputs the processed pointCloud object.

Custom Preprocessing Algorithms

oA ol

Add Algorithm Crop Denaise

4 Spatial Algorithms ARSERH M
E::I,:l MNew '
i From File) |x§:| Import Class
Temporal Algorithms| fX |mport Function

E,'_',Zl Mew L

i, From File ' "__.'

Refresh

Refresh List

You can create a new custom preprocessing algorithm or import an existing one into the app. Follow
these steps to apply a custom preprocessing algorithm to your data.

1 Click Add Algorithm. To apply your algorithm to only a single point cloud frame, select an
option from the Spatial Algorithms section. To apply your algorithm to multiple point cloud
frames, select an option from the Temporal Algorithms section.

2 To create a new algorithm, select New. Select whether to create an algorithm using a Class
Template or a Function Template. MATLAB opens a new MAT file that contains a code
framework and directions to create your custom algorithm. With the template, you can also
define user interface (UI) elements for parameter tuning. These UI elements appear in the
Algorithm Parameters pane.

3 To import your algorithm into the app, first select Add Algorithm and, in the Spatial
Algorithms or Temporal Algorithms section, select From File. Then, select Import Class or
Import Function. In the dialog box, select the file that contains the algorithm you want to
import.

To finalize your edits to the point cloud and return to the Edit tab, on the app toolstrip, select
Accept.

You can also export the history of edit operations to a function-based algorithm using Export To
Function.

For more information on creating custom preprocessing workflows, see “Create Custom
Preprocessing Workflow with Lidar Viewer” on page 3-2.

4-46

Get Started with Lidar Viewer

Export Point Cloud

You can export point clouds as PCD or PLY files. After processing your point clouds, on the app
toolstrip, select Export Point Cloud. Lidar Viewer opens the Export Point Cloud dialog box.

Select the point clouds you want to export. Then, in the Provide path to the destination folder text
box, specify or browse to the destination folder.

Note If the input point cloud data is in PLY format, the app exports it as a PLY file. If you load input
data of any other format, the app exports them as PCD files.

Measure Point Cloud

You can measure point cloud attributes such as distance, angle, and volume using the tools in the
Measurement tab.

4\ Lidar Viewer - O X

LIDAR VIEWER MEASUREMENT

S N e A 5 W

Distance Elevation Location Angle Volume | Clear All

Data Browser LAS/LAZ File_aerialLidarData
LAS/LAZ File_aerialLidarData
Velodyne Lidar_lidarData_Construction

3

Point Cloud Information

Source Name LAS/LAZ File_ae|

Type LASILAZ File

Points Count 1018047

X-Limits [429745, 43014

Y-Limits [3679831, 3pg0| | '2yback Slider

Z-Limits [73.126]

Current Frame Index |1 e e

Number Of Frames 1 |@||@||@||@‘|@|
»

To measure an attribute of the point cloud, select a measurement tool on the app toolstrip, then
interactively select points on the point cloud to return the corresponding measurement.

* Distance — Measure the distance between any two points in the point cloud.

4-47

4 Concept Pages

4-48

* Elevation — Measure the elevation between any two points in the point cloud.
* Location — Obtain the xyz-coordinates of a point.

* Angle — Select three points on the point cloud to measure the angles of the triangle defined by
the points.

* Volume — Measure the volume inside a cuboid region on the point cloud. You can interactively
adjust the limits and the size of the cuboid.

Note The app deletes all your measurements in the current signal when you select Edit Point Cloud
on the app toolstrip, or toggle to a different point cloud signal.

See Also

Apps
Lidar Viewer | Lidar Labeler

Functions
pcshow | pointCloud | pcdownsample | pcmedian | pcdenoise | pcorganize |
segmentGroundSMRF | pcfitplane | segmentGroundFromLidarData

Objects
pointCloud | lasFileReader

More About

. “Create Custom Preprocessing Workflow with Lidar Viewer” on page 3-2

Getting Started with PointPillars

Getting Started with PointPillars

PointPillars is a method for 3-D object detection using 2-D convolutional layers. PointPillars network
has a learnable encoder that uses PointNets to learn a representation of point clouds organized in
pillars (vertical columns). The network then runs a 2-D convolutional neural network (CNN) to
produce network predictions, decodes the predictions, and generates 3-D bounding boxes for
different object classes such as cars, trucks, and pedestrians.

PointPillars Decade
Pillars Metwork Predictions
Craation

Feature Map
Predictions

The PointPillars network has these main stages.

1 Use a feature encoder to convert a point cloud to a sparse pseudoimage.
2 Process the pseudoimage into a high-level representation using a 2-D convolution backbone.
3 Detect and regress 3D bounding boxes using detection heads.

PointPillars Network

A PointPillars network requires two inputs: pillar indices as a P-by-2 and pillar features as a P-by-N-
by-K matrix. P is the number of pillars in the network, N is the number of points per pillar, and K is
the feature dimension.

The network begins with a feature encoder, which is a simplified PointNet. It contains a series of
convolution, batch-norm, and relu layers followed by a max pooling layer. A scatter layer at the end
maps the extracted features into a 2-D space using the pillar indices.

Next, the network has a 2-D CNN backbone that consists of encoder-decoder blocks. Each encoder
block consists of convolution, batch-norm, and relu layers to extract features at different spatial
resolutions. Each decoder block consists of transpose convolution, batch-norm, and relu layers.

The network then concatenates output features at the end of each decoder block, and passes these
features through six detection heads with convolutional and sigmoid layers to predict occupancy,
location, size, angle, heading, and class.

4-49

4 Concept Pages

216x248x1
120002 _". Occupancy
216x248x3
L. Conv Deconv
. > Location
”5?0_@*
G, 216x248x3
2X .
12000x100x9 4325496 _“. Size
{.—».—b.—».]>-- ——. 216x248x1
3 o & . . £, % —". Angle
% (o) . P
Ry, Ty e %, % % %
%%, % g Ly, O BN 216x248x1
r@d‘ O% [- %‘-.
e — Heading
Conv Deconv “3%)
% 216x248x1
2

Inputs —’. Classification

I PillarFeature Net
I Scatter Layer

I Backbone Netwerk
I Detection Head [S5D)

4-50

Create PointPillars Network

You can use the Deep Network Designer app to interactively create a PointPillars deep learning
network. To programmatically create a PointPillars network, use the
pointPillarsObjectDetector object.

Transfer Learning

Reconfigure a pretrained PointPillars network by using the pointPillarsObjectDetector object
to perform transfer learning. Specify the new object classes and the corresponding anchor boxes to
train the network on a new dataset.

Train PointPillars Object Detector and Perform Object Detection

Use the trainPointPillarsObjectDetector function to train a PointPillars network. To perform
object detection on a trained PointPillars network, use the detect function. For more information on
how to train a PointPillars network, see “Lidar 3-D Object Detection Using PointPillars Deep
Learning” on page 1-189.

Code Generation

To learn how to generate CUDA® code for a PointPillars Network, see “Code Generation For Lidar
Object Detection Using PointPillars Deep Learning” on page 1-319.

References

[1] Lang, Alex H., Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.
“PointPillars: Fast Encoders for Object Detection From Point Cloud” In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 12689-97. Long Beach, CA,
USA: IEEE, 2019. https://doi.org/10.1109/CVPR.2019.01298.

https://doi.org/10.1109/CVPR.2019.01298

Getting Started with PointPillars

[2] Hesai and Scale. PandaSet. https://scale.com/open-datasets/pandaset.

See Also

Apps
Deep Network Designer | Lidar Viewer | Lidar Labeler

Objects
pointPillarsObjectDetector

Functions
trainPointPillarsObjectDetector | detect

Related Examples

. “Lidar 3-D Object Detection Using PointPillars Deep Learning” on page 1-189

. “Code Generation For Lidar Object Detection Using PointPillars Deep Learning” on page 1-319
. “Lane Detection in 3-D Lidar Point Cloud” on page 1-272

. “Unorganized to Organized Conversion of Point Clouds Using Spherical Projection” on page 1-
265
More About

. “Deep Learning in MATLAB” (Deep Learning Toolbox)
. “Getting Started with Point Clouds Using Deep Learning”

4-51

https://scale.com/open-datasets/pandaset

4 Concept Pages

Getting Started with PointNet++

PointNet++ is a popular neural network used for semantic segmentation of unorganized lidar point
clouds. Semantic segmentation associates each point in a 3-D point cloud with a class label, such as
car, truck, ground, or vegetation.

PointNet++ network partitions the input points into a set of clusters and then extracts the features
using a multi-layer perceptron (MLP) network. The network applies PointNet recursively on the
nested, partitioned inputs to extract multi-scale features for accurate semantic segmentation.

Applications of PointNet++ include:

* Tree segmentation for digital forestry applications.
» Extracting a digital terrain model from aerial lidar data.
* Perception for indoor navigation in robotics.

* 3-D city modelling from aerial lidar data.

PointNet++ Network

The PointNet++ network contains an encoder with set abstraction modules and a decoder with
feature propagation modules.

The set abstraction module processes and extracts a set of points to produce a new set with fewer
elements. Each set abstraction module contains a sampling and grouping layer followed by a mini-
PointNet network.

* The sampling and grouping layer performs sampling by identifying the centroids of local regions.
It then performs grouping by constructing local region sets of the neighboring points around the
centroids.

* The mini-PointNet network contains a shared MLP network with a series of convolution,
normalization, relu layers followed by a max pooling layer. It encodes the local region patterns
into feature vectors.

The feature propagation module interpolates the subsampled points and then concatenates them with
the point features from the set abstraction modules. The network then passes these features through
the unit PointNet network.

| Pointhet Unit PointMet

o-{0-0-0-10] - o{0-0-0-1-0

e)

% 5 4 % % G 4 - %

) %, 2] (e o L
o 4-,’00 {;}c ’bﬂé Q),?# O,.% %, %59 e, ; Y O.% % é‘t&;‘"f
v Y, @y, ® " 5 ’cq,(fr“
% € B e oo Mcou oy

The sampling & grouping layer of the set abstraction module and the interpolation layer of the
feature propagation module in this network are implemented using the functionLayer function.

4-52

Getting Started with PointNet++

Create PointNet++ Network

Use the pointnetplusLayers function to create a PointNet++ network for segmenting point cloud
data.

Train PointNet++ Network

To learn how to train a PointNet++ network for segmenting point cloud data, see “Aerial Lidar
Semantic Segmentation Using PointNet++ Deep Learning” on page 1-324.

Code Generation

To learn how to generate CUDA® code for a PointNet++ network, see “Code Generation For Aerial
Lidar Semantic Segmentation Using PointNet++ Deep Learning” on page 1-95.

References

[1] Qi, Charles R., Li Yi, Hao Su, and Leonidas J. Guibas. ‘PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space’. ArXiv:1706.02413 [Cs], 7 June 2017. https://
arxiv.org/abs/1706.02413.

[2] Varney, Nina, Vijayan K. Asari, and Quinn Graehling. ‘DALES: A Large-Scale Aerial LiDAR Data
Set for Semantic Segmentation’. ArXiv:2004.11985 [Cs, Stat], 14 April 2020. https://
arxiv.org/abs/2004.11985.

See Also

Apps
Deep Network Designer | Lidar Viewer | Lidar Labeler

Functions
pointnetpluslLayers | squeezesegv2lLayers | semanticseg | trainNetwork |
evaluateSemanticSegmentation

Related Examples
. “Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning” on page 1-324

. “Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning”
on page 1-95

. “Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network” on
page 1-173

. “Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network” on page 1-
128

More About

. “Deep Learning in MATLAB” (Deep Learning Toolbox)
. “Getting Started with Point Clouds Using Deep Learning”

4-53

https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/2004.11985
https://arxiv.org/abs/2004.11985

Tutorials

* “Generate Lidar Point Cloud Data for Driving Scenario with Multiple Actors” on page 5-2
* “Read Point Cloud Data from LAZ File” on page 5-6

+ “Estimate Transformation Between Two Point Clouds Using Features” on page 5-7

* “Match and Visualize Corresponding Features in Point Clouds” on page 5-10

* “Read Lidar and Camera Data from Rosbag File” on page 5-13

* “Read, Process, and Write Lidar Point Cloud Data” on page 5-15

« “Extract Ground Points and Non-Ground Points From Lidar Data ” on page 5-20

5 Tutorials

Generate Lidar Point Cloud Data for Driving Scenario with
Multiple Actors

5-2

This example shows you how to generate lidar point cloud data for a driving scene with roads,
pedestrians, and vehicles. First create a driving scenario by using the drivingScenario
(Automated Driving Toolbox) object, and then configure a LidarSensor object to generate point
cloud data for the scenario.

Create Driving Scenario

Create a driving scenario using the drivingScenario (Automated Driving Toolbox) object, and
define the ego vehicle.

scenario = drivingScenario;

% Add the ego vehicle

egoVehicle = vehicle(scenario,
ClassID=1,
Mesh=driving.scenario.carMesh);

waypoints = [1 -2 0; 35 -2 0];

trajectory(egoVehicle,waypoints,10);

Define the road and the lanes for the scenario as Actor objects using the actor (Automated Driving
Toolbox) function. Specify a custom value for the ClassID property of each actor. Using the actor
(Automated Driving Toolbox) function to create roads enables you to define the mesh representation
for the road, to generate point cloud data. Otherwise, the function does not generate points for the
road.

actor(scenario,ClassID=7,Length=200,Width=20,Height=0.1);

actor(scenario,ClassID=7,Length=200,Width=0.3,
Height=0.1,Position=[0 -5 0.02]);

actor(scenario,ClassID=7,Length=200,Width=0.3,
Height=0.1,Position=[0 5 0.02]);

Add a car, truck, pedestrian, and bicycle to the scene as other actors.

% Add a moving car with a speed of 20 meters per second.
movingCar = vehicle(scenario,
ClassID=1,
Mesh=driving.scenario.carMesh);
waypoints = [90 -5 0; 15 -5 0];
speed = 20;
trajectory(movingCar,waypoints, speed);

% Add a truck with a speed of 15 meters per second.
truck = vehicle(scenario,
ClassID=2,
Length=8.2,
Width=2.5,
Height=3.5,
Mesh=driving.scenario.truckMesh);
waypoints = [70 1.7 0; 20 1.9 0];
speed = 15;
trajectory(truck,waypoints, speed);

% Add a pedestrian.

Generate Lidar Point Cloud Data for Driving Scenario with Multiple Actors

pedestrian = actor(scenario,
ClassID=4,
Length=0.24,
Width=0.45,
Height=1.7,

Mesh=driving.scenario.pedestrianMesh);

waypoints = [23 -4 0; 10.4 -4 0];
speed = 1.5;

trajectory(pedestrian,waypoints,speed);

% Add a bicycle.

bicycle = actor(scenario,
ClassID=3,
Length=1.7,
Width=0.45,
Height=1.7,

Mesh=driving.scenario.bicycleMesh);
waypoints = [12.7 -3.3 0; 49.3 -3.3 0];

speed =
trajectory(bicycle,waypoints, speed);
plot(scenario,Waypoints="on")
title("Driving scenario with actors")

Generate Point Cloud Data

Create a lidarSensor object.

lidar = lidarSensor(AzimuthResolution=0.5,
ElevationAngles=[-25:1.6:10 11:1: 20])

Generate the actor profiles from your driving scenario and assign them to the LidarSensor object.

lidar.ActorProfiles = actorProfiles(scenario);
Create a pcplayer object to visualize the output point cloud.
player = pcplayer([-60 60],[-20 20],[0 5]);

Advance the scene and generate point cloud data.

while advance(scenario) && player.isOpen()
% Get updated target poses from the scenario object

tgts = targetPoses(egoVehicle);

% Generate and visualize point cloud data
[ptCloud,isValidTime] = lidar(tgts,scenario.SimulationTime);

if isValidTime
view(player,ptCloud);
end
end

5-3

5 Tutorials

Driving scenario with actors

_1 m i i i
100 50 0 -50 -100

Generate Lidar Point Cloud Data for Driving Scenario with Multiple Actors

4 = IEI EE

File Edit View Insert Tools Desktop Window Help o

NDdde @08 | KE

See Also

Functions
lidarSensor | drivingScenario

3-5

5 Tutorials

Read Point Cloud Data from LAZ File

This example shows how to read and visualize point cloud data from a LAS / LAZ file.

Create a lasFileReader object for a LAZ file. Then, use the readPointCloud function to read
point cloud data from the LAZ file and generate a pointCloud object.

Create a lasFileReader object to access the LAZ file data.
path = fullfile(toolboxdir("lidar"),"lidardata",

"las","aeriallLidarData.laz");
lasReader = lasFileReader(path);

Read point cloud data from the LAZ file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Visualize the point cloud.

figure
pcshow(ptCloud.Location)

Estimate Transformation Between Two Point Clouds Using Features

Estimate Transformation Between Two Point Clouds Using
Features

This example shows how to estimate a rigid transformation between two point clouds. In the example,
you use feature extraction and matching to significantly reduce the number of points required for
estimation. After you use the extractFPFHFeatures function to extract fast point feature histogram
(FPFH) features from the point clouds, you use the pcmatchfeatures function to search for
matches in the extracted features. Finally, you use the estimateGeometricTransform3D function
and the matching features to estimate the rigid transformation.

Preprocessing
Create two point clouds by applying rigid transformation to an input point cloud.

Read the point cloud data into the workspace.

rng("default")
ptCld = pcread("highwayScene.pcd");
ptCld.Count

ans = 65536

Downsample the point cloud to improve the computation speed, as it contains around 65,000 points.

ptCloud = pcdownsample(ptCld,"gridAverage",0.2);
ptCloud.Count

ans = 24596

Create a rigid transformation matrix with a 30-degree rotation and translation of 5 units in x- and y-
axes.

rotAngle = 30;
rot = [cosd(rotAngle) sind(rotAngle) 0;
-sind(rotAngle) cosd(rotAngle) 0;
0 0 11;
[55 0];
rigid3d(rot,trans);

trans
tform

Transform the input point cloud.

ptCloudTformed = pctransform(ptCloud,tform);
Visualize the two point clouds.
pcshowpair(ptCloud,ptCloudTformed)

xlim([-50 75])

ylim([-40 80])
legend("Original","Transformed","TextColor",[1 1 0])

5-7

5 Tutorials

Criginal
Transformed

Feature Extraction and Registration

Extract features from both the point clouds using the extractFPFHFeatures function.

fixedFeature = extractFPFHFeatures(ptCloud);
movingFeature = extractFPFHFeatures(ptCloudTformed);

Find matching features and display the number of matching pairs.

[matchingPairs,scores] = pcmatchfeatures(fixedFeature,movingFeature,
ptCloud, ptCloudTformed, "Method", "Exhaustive");
length(matchingPairs)

ans = 1814

Select matching points from the point clouds.

fixedPts = select(ptCloud,matchingPairs(:,1));
matchingPts = select(ptCloudTformed,matchingPairs(:,2));

Estimate the transformation matrix using the matching points.

estimatedTform = estimateGeometricTransform3D(fixedPts.Location,
matchingPts.Location, "rigid");
disp(estimatedTform.T)

0.8660 0.5000 0.0002
-0.5000 0.8660 -0.0002 0

(o)

Estimate Transformation Between Two Point Clouds Using Features

-0.0003 0.0000 1.0000 0
4.9995 5.0022 0.0020 1.0000

Display the defined transformation matrix.

disp(tform.T)

0.8660 0.5000 0 0
-0.5000 0.8660 0 0

0 0 1.0000 0
5.0000 5.0000 0 1.0000

Use the estimated transformation to retransform ptCloudTformed back to the initial point cloud.

ptCloudTformed = pctransform(ptCloudTformed, invert(estimatedTform));

Visualize the two point clouds.

pcshowpair(ptCloud, ptCloudTformed)
x1lim([-50 501)

ylim([-40 60])

title("Aligned Point Clouds")

Aligned Point Clouds

5-9

5 Tutorials

Match and Visualize Corresponding Features in Point Clouds

This example shows how to match corresponding features between point clouds using the
pcmatchfeatures function and visualize them using the pcshowMatchedFeatures function.

Create a velodyneFileReader object.
veloReader = velodyneFileReader('lidarData ConstructionRoad.pcap', 'HDL32E");

Read two point clouds from the velodyneFileReader object into the workspace.

frameNumber = 1;

skipFrame = 5;

fixed = readFrame(veloReader, frameNumber);

moving = readFrame(veloReader, frameNumber+skipFrame);

Segment and remove the ground plane from the fixed point cloud and moving point cloud.

groundPtsIdxFixed = segmentGroundSMRF(fixed);

groundPtsIdxMoving = segmentGroundSMRF(moving);

fixedSeg = select(fixed,~groundPtsIdxFixed, 'OutputSize','full');
movingSeg = select(moving,~groundPtsIdxMoving, 'OutputSize"', 'full');
figure

pcshowpair(movingSeg, fixedSeg)

ylim([-50 60])

title('Input Point Clouds')

Input Point Clouds

The superimposed input point clouds are color coded:

5-10

Match and Visualize Corresponding Features in Point Clouds

* Magenta — Moving point cloud
* Green — Fixed point cloud

Downsample the point clouds to reduce the computation time. Downsampling reduces the number of
points to process.

fixedDownsampled = pcdownsample(fixedSeg, 'gridAverage',0.2);
movingDownsampled = pcdownsample(movingSeg, 'gridAverage',0.2);

Extract features from the point clouds using the extractFPFHFeatures function. The functions
returns valid indices in both the point clouds. Select the valid points and create new reference point
clouds.

[fixedFeature, fixedValidInds] = extractFPFHFeatures(fixedDownsampled);
[movingFeature,movingValidInds] = extractFPFHFeatures(movingDownsampled);
fixedValidPts = select(fixedDownsampled, fixedValidInds);

movingValidPts = select(movingDownsampled,movingValidInds);

Match features between the point clouds using the extracted features and reference point clouds.

indexPairs = pcmatchfeatures(movingFeature, fixedFeature,movingValidPts,
fixedValidPts);

If you do not have the corresponding point cloud data, you can use the two feature sets by
themselves. The pcmatchfeatures function uses point cloud data to estimate the spatial relation
between the points associated with potential feature matches and reject matches based on a spatial
relation threshold.

Create point clouds of only the points in each point cloud with matching features in the other point
cloud.

matchedFixedPts = select(fixedValidPts,indexPairs(:,2));
matchedMovingPts = select(movingValidPts,indexPairs(:,1));

Visualize the matches.

figure

pcshowMatchedFeatures(movingSeg, fixedSeg,matchedMovingPts,matchedFixedPts,
'Method', 'montage')

xlim([-40 210])

ylim([-50 501])

title('Matched Points')

5-11

5 Tutorials

Matched Points

The matched features and point clouds are color coded to improve visualization:

* Magenta — Moving point cloud

* Green — Fixed point cloud

* Red circle — Matched points in the moving point cloud
* Blue asterisk — Matched points in the fixed point cloud
* Yellow — Line connecting the matched features

5-12

Read Lidar and Camera Data from Rosbag File

Read Lidar and Camera Data from Rosbag File

This example shows how to read and save images and point cloud data from a rosbag file. This
example also shows how to prepare the data for lidar camera calibration.

Download the rosbag file using the helperDownloadRosbag helper function, defined at the end of
this example.

path = helperDownloadRosbag;
Retrieve information from the bag file.
bag = rosbag(path);

Select image and point cloud messages from the rosbag and select a subset of messages from the file
by using the appropriate topic names. You can filter the data by using timestamps as well. For more
information, see the select (ROS Toolbox) function.

imageBag = select(bag, 'Topic','/camera/image/compressed');
pcBag = select(bag, 'Topic', '/points');

Read all the messages.

imageMsgs = readMessages(imageBag);
pcMsgs = readMessages(pcBag);

To prepare data for lidar camera calibration, the data across both the sensors must be time-
synchronized. Create timeseries (ROS Toolbox) objects for the selected topics and extract the
timestamps.

tsl timeseries(imageBag);

ts2 timeseries(pcBag);
tl = tsl.Time;
t2 = ts2.Time;

For accurate calibration, images and point clouds must be captured with the same timestamps. Match
the corresponding data from both the sensors according to their timestamps. To account for
uncertainty, use a margin of 0.1 seconds.

k =1;
if size(t2,1) > size(tl1,1)
for i = 1l:size(tl1,1)
[val,indx] = min(abs(tl(i) - t2));
if val <= 0.1
idx(k,:) = [1i indx];
k =k + 1;
end
end
else
for i = 1l:size(t2,1)
[val,indx] = min(abs(t2(i) - t1));
if val <= 0.1
idx(k,:) = [indx 1];
k =k + 1;
end
end
end

5-13

5 Tutorials

Create directories to save the valid images and point clouds.

pcFilesPath = fullfile(tempdir, 'PointClouds');

imageFilesPath = fullfile(tempdir, 'Images');

if ~exist(imageFilesPath, 'dir')
mkdir(imageFilesPath);

end

if ~exist(pcFilesPath, 'dir"')
mkdir(pcFilesPath);

end

Extract the images and point clouds. Name and save the files in their respective folders. Save
corresponding image and point clouds under the same number.

for i 1:length(idx)
I readImage(imageMsgs{idx(i,1)});
pc = pointCloud(readXYZ(pcMsgs{idx(i,2)}));
n_strPadded = sprintf('s04d',1i) ;
pcFileName = strcat(pcFilesPath,'/',n_strPadded, '.pcd');
imageFileName = strcat(imageFilesPath,'/',n_strPadded,'.png');
imwrite(I,imageFileName);
pcwrite(pc,pcFileName);

end

Launch the Lidar Camera Calibrator app and use the interface to load the data into the app. You can
also load the data and launch the app from the MATLAB® command line.

checkerSize = 81; %millimeters
padding = [0 0 0 O];
lidarCameraCalibrator(imageFilesPath,pcFilesPath, checkerSize, padding)

Supporting Function

function rosbagFile = helperDownloadRosbag()

% Download the data set from the given URL.

rosbagZipFile = matlab.internal.examples.downloadSupportFile(
'lidar', 'data/lccSample.zip');

[outputFolder,~,~] = fileparts(rosbagZipFile);

rosbagFile = fullfile(outputFolder, 'lccSample.bag');

if ~exist(rosbagFile, 'file"')
unzip(rosbagZipFile,outputFolder);

end

end

5-14

Read, Process, and Write Lidar Point Cloud Data

Read, Process, and Write Lidar Point Cloud Data

This example shows how to read a point cloud into the workspace, select a desired set of points, and
then write the selected points to a point cloud file format.

Step 1: Read and Display Point Cloud

Read data from a . las file into the workspace by using the lasFileReader function. Display the
properties stored in the output lasFileReader object.

fileName = fullfile(toolboxdir("lidar"),"lidardata","las","aerialLidarData.laz");
lasReader = lasFileReader(fileName)

lasReader =
lasFileReader with properties:

FileName: 'B:\matlab\toolbox\lidar\lidardata\las\aeriallLidarData.laz'
Count: 1018047
LasVersion: '1.0'
XLimits: [4.2975e+05 4.3015e+05]
YLimits: [3.6798e+06 3.6801e+06]
ZLimits: [72.7900 125.8200]
GPSTimeLimits: [3.3355e+05 sec 3.3443e+05 sec]
NumReturns: 4
NumClasses: 10
SystemIdentifier: 'LAStools (c) by rapidlasso GmbH'
GeneratingSoftware: 'TerraScan + OT'
FileCreationDate: 28-Apr-2020
FileSourceID: 0
ProjectID: '0-0-0-00000000'
PointDataFormat: 1
ClassificationInfo: [6x3 table]
LaserReturnInfo: [4x2 table]
VariableLengthRecords: [3x3 table]

Read the point cloud from the . las file.

ptCloud = readPointCloud(lasReader);

Display the point cloud.

fig = figure(Position=[0 0 800 400]);
hPanel = uipanel(fig);
hPlot = axes(hPanel);
pcshow(ptCloud.Location,Parent=hPlot)

5-15

5 Tutorials

5-16

Step 2: Select Desired Set of Points

You can select a desired set of points in the input point cloud by specifying the classification value for
the object classes and indices of the points within a region-of-interest (ROI).

Select points by specifying classification value

* To select the points by specifying the classification value, read information about the object
classes in the input point cloud by using the ClassificationInfo property of the
lasFileReader object.

disp(lasReader.ClassificationInfo)

Classification Value Class Name Number of Points by Class
1 "Unclassified" 114842
2 "Ground" 646632
4 "Medium Vegetation" 210101
6 "Building" 45699
8 "Reserved(8)" 751
9 "Water" 22

» Specify the classification value for the object class to read from the input point cloud by using the
readpointCloud function. To read the points corresponding to medium vegetation region, set
the value for Classification name-value argument to 4.

ptCloudB = readPointCloud(lasReader,Classification=4);
Display the point cloud.

figl = figure(Position=[0 0 800 400]);
hPanell = uipanel(figl);

Read, Process, and Write Lidar Point Cloud Data

hPlotl = axes(hPanell);
pcshow(ptCloudB.Location,Parent=hPlotl)

Select points by specifying indices
Define a cuboid ROI within the range of the x, y and z coordinates of the input point cloud.

roi = [lasReader.XLimits(1)+200, lasReader.XLimits(2), ...
lasReader.YLimits (1), lasReader.YLimits(2), lasReader.ZLimits(1l), lasReader.ZLimits(2)];

Find the indices of the points that lie within the cuboid ROI.

indices = findPointsInROI(ptCloudB, roi);

Select the points that lie within the cuboid ROI and store as a point cloud object.
ptCloudC = select(ptCloudB,indices);

Display the point cloud.

fig2 = figure(Position=[0 O 800 400]);

hPanel2 = uipanel(fig2);

hPlot2 = axes(hPanel2);
pcshow(ptCloudC.Location,Parent=hPlot2)

5-17

5 Tutorials

Step 3: Write Selected Points to .las File format

Specify the name for the .las file and create a lasFileWriter object.

newfileName = "aerialvegetation.las";
lasWriter = lasFileWriter(newfileName);

Write the selected points to the . las file by using the writePointCloud function. The function
creates the new file in the current working directory.

writePointCloud(lasWriter,ptCloudC);
Step 4: Check Properties of the Newly Written File
newlasReader = lasFileReader(newfileName)

newlasReader =
lasFileReader with properties:

FileName: 'C:\TEMP\Bdoc22a 1891349 13144\1ibC86E06\20\tpaeO0clal\lidar-ex0473765
Count: 116598
LasVersion: '1.2'
XLimits: [4.2995e+05 4.3015e+05]
YLimits: [3.6798e+06 3.6801e+06]
ZLimits: [84.9500 123.1100]
GPSTimeLimits: [0 sec 0 sec]
NumReturns: 1
NumClasses: 1
SystemIdentifier: 'MATLAB'
GeneratingSoftware: 'LASzip DLL 3.4 rl (190411)'
FileCreationDate: 25-Feb-2022
FileSourceID: 0
ProjectID: '0-0-0-00000000"

5-18

Read, Process, and Write Lidar Point Cloud Data

PointDataFormat: 3
ClassificationInfo: [1x3 table]
LaserReturnInfo: [1x2 table]
VariableLengthRecords: [0x3 table]

See Also
lasFileReader | pcshow | readPointCloud | findPointsInROI | pointCloud | select

5-19

5 Tutorials

Extract Ground Points and Non-Ground Points From Lidar Data

5-20

Read lidar data from a PCAP file by using the velodyneFileReader function.
veloReader = velodyneFileReader("lidarData ConstructionRoad.pcap","HDL32E");
Specify a time interval to extract a set of lidar data frames from the input lidar data.

veloReader.CurrentTime = veloReader.StartTime + seconds(5);
StopTime = veloReader.StartTime + seconds(20);

Configure the figure window to display the input lidar data frames and the extracted ground points by
using the pcplayer function.

fig = figure(Position=[0 0 800 600]);

xlimits = [-30 30];
ylimits = [-30 30];
zlimits = [-10 20];

hPanel = uipanel(fig,Position=[0 0.5 1 0.5]);
hPlot = axes(hPanel);
player = pcplayer(xlimits,ylimits,zlimits,Parent=hPlot);

hPanel groundData = uipanel(fig,Position=[0 0@ 0.5 0.5]);
hPlot groundData = axes(hPanel groundData);
player groundData = pcplayer(xlimits,ylimits,zlimits,Parent=hPlot groundData);

hPanel nongroundData = uipanel(fig,Position=[0.5 0 0.5 0.5]);
hPlot nongroundData = axes(hPanel nongroundData);
player nongroundData = pcplayer(xlimits,ylimits,zlimits,Parent=hPlot nongroundData);

Read the lidar data frames and extract the ground points in the lidar data by using the
segmentGroundFromLidarData function. Then, use the indices of the extracted ground points to
segment the non-ground points from the frame.

while (hasFrame(veloReader) && veloReader.CurrentTime < StopTime)
% Read a lidar data frame
ptCloud = readFrame(veloReader);

% Extract ground points from lidar data frame
groundPtsIdx = segmentGroundFromLidarData(ptCloud);
ptCloudGround = select(ptCloud,groundPtsIdx,OutputSize="full");

% Extract non-ground points from lidar data frame
ptCloudNonGround = select(ptCloud,~groundPtsIdx,OutputSize="full");

% Display the input lidar data and the extracted points
view(player,ptCloud)
title(hPlot, "Input Lidar Data")
view(player _groundData,ptCloudGround)
title(hPlot _groundData, "Extracted Ground Points")
view(player _nongroundData,ptCloudNonGround)
title(hPlot _nongroundData, "Extracted Non-Ground Points")
colormap (autumn)
pause(0.01);

end

Extract Ground Points and Non-Ground Points From Lidar Data

See Also
select | segmentGroundFromLidarData | pcplayer

5-21

	Lidar Toolbox Featured Examples
	Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation
	Curb Detection in 3-D Lidar Point Cloud
	Code Generation for Lidar Object Detection Using SqueezeSegV2 Network
	Lidar Object Detection Using Complex-YOLO v4 Network
	Automate Ground Truth Labeling for Lidar Point Cloud Semantic Segmentation Using Lidar Labeler
	Create, Process, and Export Digital Surface Model from Lidar Data
	Multi-Lidar Calibration
	Extract Forest Metrics and Individual Tree Attributes from Aerial Lidar Data
	Code Generation For Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning
	Build Map and Localize Using Segment Matching
	Lidar and Camera Calibration
	Lidar Point Cloud Semantic Segmentation Using PointSeg Deep Learning Network
	Detect, Classify, and Track Vehicles Using Lidar
	Feature-Based Map Building from Lidar Data
	Detect Vehicles in Lidar Using Image Labels
	Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network
	Code Generation for Lidar Point Cloud Segmentation Network
	Lidar 3-D Object Detection Using PointPillars Deep Learning
	Aerial Lidar SLAM Using FPFH Descriptors
	Collision Warning Using 2-D Lidar
	Track Vehicles Using Lidar: From Point Cloud to Track List
	Build Map from 2-D Lidar Scans Using SLAM
	Terrain Classification for Aerial Lidar Data
	Data Augmentations for Lidar Object Detection Using Deep Learning
	Unorganized to Organized Conversion of Point Clouds Using Spherical Projection
	Lane Detection in 3-D Lidar Point Cloud
	Automate Ground Truth Labeling For Vehicle Detection Using PointPillars
	Track-Level Fusion of Radar and Lidar Data
	Code Generation For Lidar Object Detection Using PointPillars Deep Learning
	Aerial Lidar Semantic Segmentation Using PointNet++ Deep Learning

	Lidar Labeling
	Get Started with the Lidar Labeler
	Load Lidar Data to Label
	Create Labels and Attributes
	Ground Segmentation
	Label Point Cloud Using Automation
	View and Adjust the Labels
	Export the Labels

	Keyboard Shortcuts and Mouse Actions for Lidar Labeler
	Label Definitions
	Frame Navigation and Time Interval Settings
	Labeling Window
	Cuboid Resizing and Moving
	Zooming, Panning, and Rotating
	App Sessions

	Use Custom Point Cloud Source Reader for Labeling
	Create Custom Reader Function
	Import Data Source into Lidar Labeler App

	Create Automation Algorithm for Labeling
	Create New Algorithm
	Import Existing Algorithm
	Custom Algorithm Execution

	Temporal Automation Algorithms
	Create Temporal Automation Algorithm
	Run Temporal Automation Algorithm

	Lidar Viewer Tutorial
	Create Custom Preprocessing Workflow with Lidar Viewer
	Read Point Cloud Data
	Load Point Cloud Data into Lidar Viewer
	Create Custom Preprocessing Algorithm
	Combine Multiple Preprocessing Algorithms
	Export Custom Preprocessing Workflow to MATLAB Function
	Export Point Cloud Data from Lidar Viewer

	Concept Pages
	Introduction to Lidar
	What is Lidar?
	What is a Point Cloud?
	Types of Lidar
	Advantages of Lidar Technology
	Lidar Processing Overview
	Applications of Lidar Technology

	Coordinate Systems in Lidar Toolbox
	World Coordinate System
	Sensor Coordinate System
	Spatial Coordinate System
	Pattern Coordinate System

	What Is Lidar-Camera Calibration?
	Extrinsic Calibration of Lidar and Camera

	Calibration Guidelines
	Checkerboard Guidelines
	Guidelines for Capturing Data

	What are Organized and Unorganized Point Clouds?
	Introduction
	Unorganized to Organized Conversion

	Parameter Tuning for Ground Segmentation
	Get Started with Lidar Camera Calibrator
	Load Data
	Feature Detection
	Calibration
	Export Results
	Keyboard Shortcuts and Mouse Actions
	Limitations

	Get Started with Lidar Viewer
	Load Data
	Data Visualization
	Color Controls
	Camera View Options
	Edit Point Cloud
	Custom Preprocessing Algorithms
	Export Point Cloud
	Measure Point Cloud

	Getting Started with PointPillars
	PointPillars Network
	Create PointPillars Network
	Transfer Learning
	Train PointPillars Object Detector and Perform Object Detection
	Code Generation

	Getting Started with PointNet++
	PointNet++ Network
	Create PointNet++ Network
	Train PointNet++ Network
	Code Generation

	Tutorials
	Generate Lidar Point Cloud Data for Driving Scenario with Multiple Actors
	Read Point Cloud Data from LAZ File
	Estimate Transformation Between Two Point Clouds Using Features
	Match and Visualize Corresponding Features in Point Clouds
	Read Lidar and Camera Data from Rosbag File
	Read, Process, and Write Lidar Point Cloud Data
	Extract Ground Points and Non-Ground Points From Lidar Data

